利用自由电子干涉仪进行相干放大超快成像

IF 32.3 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2024-07-03 DOI:10.1038/s41566-024-01451-w
Tomer Bucher, Harel Nahari, Hanan Herzig Sheinfux, Ron Ruimy, Arthur Niedermayr, Raphael Dahan, Qinghui Yan, Yuval Adiv, Michael Yannai, Jialin Chen, Yaniv Kurman, Sang Tae Park, Daniel J. Masiel, Eli Janzen, James H. Edgar, Fabrizio Carbone, Guy Bartal, Shai Tsesses, Frank H. L. Koppens, Giovanni Maria Vanacore, Ido Kaminer
{"title":"利用自由电子干涉仪进行相干放大超快成像","authors":"Tomer Bucher, Harel Nahari, Hanan Herzig Sheinfux, Ron Ruimy, Arthur Niedermayr, Raphael Dahan, Qinghui Yan, Yuval Adiv, Michael Yannai, Jialin Chen, Yaniv Kurman, Sang Tae Park, Daniel J. Masiel, Eli Janzen, James H. Edgar, Fabrizio Carbone, Guy Bartal, Shai Tsesses, Frank H. L. Koppens, Giovanni Maria Vanacore, Ido Kaminer","doi":"10.1038/s41566-024-01451-w","DOIUrl":null,"url":null,"abstract":"<p>Accessing the low-energy non-equilibrium dynamics of materials and their polaritons with simultaneous high spatial and temporal resolution has been a bold frontier of electron microscopy in recent years. One of the main challenges lies in the ability to retrieve extremely weak signals and simultaneously disentangling the amplitude and phase information. Here we present free-electron Ramsey imaging—a microscopy approach based on light-induced electron modulation that enables the coherent amplification of optical near fields in electron imaging. We provide simultaneous time-, space- and phase-resolved measurements of a micro-drum made from a hexagonal boron nitride membrane, visualizing the sub-cycle dynamics of two-dimensional polariton wavepackets therein. The phase-resolved measurement reveals vortex–anti-vortex singularities on the polariton wavefronts, together with an intriguing phenomenon of a travelling wave mimicking the amplitude profile of a standing wave. Our experiments show a 20-fold coherent amplification of the near-field signal compared with conventional electron near-field imaging, resolving peak field intensities in the order of a few watts per square centimetre, corresponding to field amplitudes of a few kilovolts per metre. As a result, our work paves the way for the spatiotemporal electron microscopy of biological specimens and quantum materials, exciting yet delicate samples that are currently difficult to investigate.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":null,"pages":null},"PeriodicalIF":32.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherently amplified ultrafast imaging using a free-electron interferometer\",\"authors\":\"Tomer Bucher, Harel Nahari, Hanan Herzig Sheinfux, Ron Ruimy, Arthur Niedermayr, Raphael Dahan, Qinghui Yan, Yuval Adiv, Michael Yannai, Jialin Chen, Yaniv Kurman, Sang Tae Park, Daniel J. Masiel, Eli Janzen, James H. Edgar, Fabrizio Carbone, Guy Bartal, Shai Tsesses, Frank H. L. Koppens, Giovanni Maria Vanacore, Ido Kaminer\",\"doi\":\"10.1038/s41566-024-01451-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accessing the low-energy non-equilibrium dynamics of materials and their polaritons with simultaneous high spatial and temporal resolution has been a bold frontier of electron microscopy in recent years. One of the main challenges lies in the ability to retrieve extremely weak signals and simultaneously disentangling the amplitude and phase information. Here we present free-electron Ramsey imaging—a microscopy approach based on light-induced electron modulation that enables the coherent amplification of optical near fields in electron imaging. We provide simultaneous time-, space- and phase-resolved measurements of a micro-drum made from a hexagonal boron nitride membrane, visualizing the sub-cycle dynamics of two-dimensional polariton wavepackets therein. The phase-resolved measurement reveals vortex–anti-vortex singularities on the polariton wavefronts, together with an intriguing phenomenon of a travelling wave mimicking the amplitude profile of a standing wave. Our experiments show a 20-fold coherent amplification of the near-field signal compared with conventional electron near-field imaging, resolving peak field intensities in the order of a few watts per square centimetre, corresponding to field amplitudes of a few kilovolts per metre. As a result, our work paves the way for the spatiotemporal electron microscopy of biological specimens and quantum materials, exciting yet delicate samples that are currently difficult to investigate.</p>\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-024-01451-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01451-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,以同时较高的空间和时间分辨率获取材料及其极化子的低能非平衡动力学是电子显微镜的一个大胆的前沿领域。主要挑战之一在于如何获取极微弱的信号,并同时分离振幅和相位信息。在这里,我们提出了自由电子拉姆齐成像--一种基于光诱导电子调制的显微成像方法,可在电子成像中实现光学近场的相干放大。我们对由六角氮化硼膜制成的微鼓进行了时间、空间和相位同时分辨测量,对其中二维极化子波包的次周期动态进行了可视化。相位分辨测量揭示了极化子波面上的涡旋-反涡旋奇异性,以及模仿驻波振幅轮廓的行进波这一有趣现象。我们的实验表明,与传统的电子近场成像相比,近场信号的相干性放大了 20 倍,可以分辨出每平方厘米几瓦的峰值场强,相当于每米几千伏的场振幅。因此,我们的工作为生物样本和量子材料的时空电子显微镜研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coherently amplified ultrafast imaging using a free-electron interferometer

Accessing the low-energy non-equilibrium dynamics of materials and their polaritons with simultaneous high spatial and temporal resolution has been a bold frontier of electron microscopy in recent years. One of the main challenges lies in the ability to retrieve extremely weak signals and simultaneously disentangling the amplitude and phase information. Here we present free-electron Ramsey imaging—a microscopy approach based on light-induced electron modulation that enables the coherent amplification of optical near fields in electron imaging. We provide simultaneous time-, space- and phase-resolved measurements of a micro-drum made from a hexagonal boron nitride membrane, visualizing the sub-cycle dynamics of two-dimensional polariton wavepackets therein. The phase-resolved measurement reveals vortex–anti-vortex singularities on the polariton wavefronts, together with an intriguing phenomenon of a travelling wave mimicking the amplitude profile of a standing wave. Our experiments show a 20-fold coherent amplification of the near-field signal compared with conventional electron near-field imaging, resolving peak field intensities in the order of a few watts per square centimetre, corresponding to field amplitudes of a few kilovolts per metre. As a result, our work paves the way for the spatiotemporal electron microscopy of biological specimens and quantum materials, exciting yet delicate samples that are currently difficult to investigate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Fast free-electron laser targets the future Fast and furious X-ray free-electron lasers Novel light manipulation The X-ray science frontier is ultra-short and ultra-intense Simple yet powerful
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1