湿地土壤影响磷的稳定性

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2024-06-24 DOI:10.1007/s11270-024-07278-z
Ana Paula Marés Mikosik, Nerilde Favaretto, Verediana Fernanda Cherobim, Antonio Carlos Vargas Motta, Vander de Freitas Melo, Fabiane Machado Vezzani, Jairo Calderari de Oliveira Junior
{"title":"湿地土壤影响磷的稳定性","authors":"Ana Paula Marés Mikosik, Nerilde Favaretto, Verediana Fernanda Cherobim, Antonio Carlos Vargas Motta, Vander de Freitas Melo, Fabiane Machado Vezzani, Jairo Calderari de Oliveira Junior","doi":"10.1007/s11270-024-07278-z","DOIUrl":null,"url":null,"abstract":"<p>Wetlands act as filters, retaining phosphorus (P). The objective of this study was to evaluate the degree of P lability of hydromorphic (Histosol) and non-hydromorphic (Cambisol) soils under natural condition (no P addition) and with mineral P addition. The mineral P added was equivalent to 100% of the maximum phosphorus adsorption capacity, incubated during 0 and 120 days, at depths of 0-10 and 40-60 cm. The sequential P extraction was: labile, moderately labile, low lability, and residual. Under the natural condition, the moderate and low lability fractions were predominant in the Histosol, indicating lower P lability compared to the Cambisol. Total phosphorus (Pt) and organic phosphorus (Po) were higher in the Histosol compared to the Cambisol. After 120 days incubation with mineral P, the labile fraction decreased and the moderately labile fraction increased in the Histosol, demonstrating the effect of time on P stability. The addition of mineral P increased inorganic P (Pi) and also Po in both soils, indicating a strong interaction of mineral P with soil organic matter. The Po extracted with NaOH 0.1 mol L<sup>-1</sup> (moderately labile) was predominant in both soils and it was higher in the Histosol when compared to the Cambisol. In general, under both conditions (natural and mineral P addition), the Histosol stored P in more stable forms, reinforcing the need for permanent preservation of wetlands.</p>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wetland soil affects phosphorus lability\",\"authors\":\"Ana Paula Marés Mikosik, Nerilde Favaretto, Verediana Fernanda Cherobim, Antonio Carlos Vargas Motta, Vander de Freitas Melo, Fabiane Machado Vezzani, Jairo Calderari de Oliveira Junior\",\"doi\":\"10.1007/s11270-024-07278-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wetlands act as filters, retaining phosphorus (P). The objective of this study was to evaluate the degree of P lability of hydromorphic (Histosol) and non-hydromorphic (Cambisol) soils under natural condition (no P addition) and with mineral P addition. The mineral P added was equivalent to 100% of the maximum phosphorus adsorption capacity, incubated during 0 and 120 days, at depths of 0-10 and 40-60 cm. The sequential P extraction was: labile, moderately labile, low lability, and residual. Under the natural condition, the moderate and low lability fractions were predominant in the Histosol, indicating lower P lability compared to the Cambisol. Total phosphorus (Pt) and organic phosphorus (Po) were higher in the Histosol compared to the Cambisol. After 120 days incubation with mineral P, the labile fraction decreased and the moderately labile fraction increased in the Histosol, demonstrating the effect of time on P stability. The addition of mineral P increased inorganic P (Pi) and also Po in both soils, indicating a strong interaction of mineral P with soil organic matter. The Po extracted with NaOH 0.1 mol L<sup>-1</sup> (moderately labile) was predominant in both soils and it was higher in the Histosol when compared to the Cambisol. In general, under both conditions (natural and mineral P addition), the Histosol stored P in more stable forms, reinforcing the need for permanent preservation of wetlands.</p>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1007/s11270-024-07278-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1007/s11270-024-07278-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

湿地具有过滤作用,可保留磷(P)。这项研究的目的是评估在自然条件下(不添加磷)和添加矿物磷后,水形态土壤(Histosol)和非水形态土壤(Cambisol)对磷的吸附能力。在 0-10 厘米和 40-60 厘米的深度,分别培养 0 天和 120 天,添加的矿物质磷相当于最大磷吸附能力的 100%。磷的提取顺序为:易溶、中度易溶、低易溶和残留。在自然条件下,中等和低溶解度部分在组溶胶中占主导地位,这表明与寒武溶胶相比,组溶胶的磷溶解度较低。与寒武沉积相比,组溶胶中的总磷(Pt)和有机磷(Po)更高。经过 120 天的矿物磷培养后,组溶胶中的易溶解部分减少,中度易溶解部分增加,表明时间对磷稳定性的影响。矿物钾的添加增加了两种土壤中的无机钾(Pi),也增加了钾离子(Po),这表明矿物钾与土壤有机质之间有很强的相互作用。在两种土壤中,用 0.1 mol L-1 NaOH 萃取的矿质元素(中度易溶性)都占优势,与寒带土壤相比,组溶质中的矿质元素含量更高。总的来说,在两种条件下(天然和添加矿物钾),组溶胶以更稳定的形式储存钾,这加强了永久保护湿地的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wetland soil affects phosphorus lability

Wetlands act as filters, retaining phosphorus (P). The objective of this study was to evaluate the degree of P lability of hydromorphic (Histosol) and non-hydromorphic (Cambisol) soils under natural condition (no P addition) and with mineral P addition. The mineral P added was equivalent to 100% of the maximum phosphorus adsorption capacity, incubated during 0 and 120 days, at depths of 0-10 and 40-60 cm. The sequential P extraction was: labile, moderately labile, low lability, and residual. Under the natural condition, the moderate and low lability fractions were predominant in the Histosol, indicating lower P lability compared to the Cambisol. Total phosphorus (Pt) and organic phosphorus (Po) were higher in the Histosol compared to the Cambisol. After 120 days incubation with mineral P, the labile fraction decreased and the moderately labile fraction increased in the Histosol, demonstrating the effect of time on P stability. The addition of mineral P increased inorganic P (Pi) and also Po in both soils, indicating a strong interaction of mineral P with soil organic matter. The Po extracted with NaOH 0.1 mol L-1 (moderately labile) was predominant in both soils and it was higher in the Histosol when compared to the Cambisol. In general, under both conditions (natural and mineral P addition), the Histosol stored P in more stable forms, reinforcing the need for permanent preservation of wetlands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Are bioassays and Analytical Methods Equivalent to the Application of Herbicide Leaching to Sugarcane Crops? Sono-assisted Adsorption of Methyl Violet 2B Using a Magnetic Kaolin/TiO2/γ-Fe2O3 Nano Composite Phytoremediation of Chromium (VI)-Contaminated Soil by Euphorbia tithymaloides L. and Metagenomic Analysis of Rhizospheric Bacterial Community Exploring Microplastic Distribution in Agricultural Soils and Health Risk Evaluation Simultaneous Biodegradation of Linear Alkylbenzensulfonate in Anaerobic Reactors, in Two Stages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1