用于表面增强拉曼散射和等离子体驱动催化的镁纳米粒子。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-04 DOI:10.1021/acsnano.4c06858
Andrey Ten, Vladimir Lomonosov, Christina Boukouvala, Emilie Ringe
{"title":"用于表面增强拉曼散射和等离子体驱动催化的镁纳米粒子。","authors":"Andrey Ten, Vladimir Lomonosov, Christina Boukouvala, Emilie Ringe","doi":"10.1021/acsnano.4c06858","DOIUrl":null,"url":null,"abstract":"<p><p>Nanostructures of some metals can sustain localized surface plasmon resonances, collective oscillations of free electrons excited by incident light. This effect results in wavelength-dependent absorption and scattering, enhancement of the incident electric field at the metal surface, and generation of hot carriers as a decay product. The enhanced electric field can be utilized to amplify the spectroscopic signal in surface-enhanced Raman scattering (SERS), while hot carriers can be exploited for catalytic applications. In recent years, cheaper and more earth abundant alternatives to traditional plasmonic Au and Ag have gained growing attention. Here, we demonstrate the ability of plasmonic Mg nanoparticles to enhance Raman scattering and drive chemical transformations upon laser irradiation. The plasmonic properties of Mg nanoparticles are characterized at the bulk and single particle level by optical spectroscopy and scanning transmission electron microscopy coupled with electron energy-loss spectroscopy and supported by numerical simulations. SERS enhancement factors of ∼10<sup>2</sup> at 532 and 633 nm are obtained using 4-mercaptobenzoic acid and 4-nitrobenzenethiol. Furthermore, the reductive coupling of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene is observed on the surface of Mg nanoparticles under 532 nm excitation in the absence of reducing agents, indicating a plasmon-driven catalytic process. Once decorated with Pd, Mg nanostructures display an enhancement factor of 10<sup>3</sup> along with an increase in the rate of catalytic coupling. The results of this study demonstrate the successful application of plasmonic Mg nanoparticles in sensing and plasmon-enhanced catalysis.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis.\",\"authors\":\"Andrey Ten, Vladimir Lomonosov, Christina Boukouvala, Emilie Ringe\",\"doi\":\"10.1021/acsnano.4c06858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanostructures of some metals can sustain localized surface plasmon resonances, collective oscillations of free electrons excited by incident light. This effect results in wavelength-dependent absorption and scattering, enhancement of the incident electric field at the metal surface, and generation of hot carriers as a decay product. The enhanced electric field can be utilized to amplify the spectroscopic signal in surface-enhanced Raman scattering (SERS), while hot carriers can be exploited for catalytic applications. In recent years, cheaper and more earth abundant alternatives to traditional plasmonic Au and Ag have gained growing attention. Here, we demonstrate the ability of plasmonic Mg nanoparticles to enhance Raman scattering and drive chemical transformations upon laser irradiation. The plasmonic properties of Mg nanoparticles are characterized at the bulk and single particle level by optical spectroscopy and scanning transmission electron microscopy coupled with electron energy-loss spectroscopy and supported by numerical simulations. SERS enhancement factors of ∼10<sup>2</sup> at 532 and 633 nm are obtained using 4-mercaptobenzoic acid and 4-nitrobenzenethiol. Furthermore, the reductive coupling of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene is observed on the surface of Mg nanoparticles under 532 nm excitation in the absence of reducing agents, indicating a plasmon-driven catalytic process. Once decorated with Pd, Mg nanostructures display an enhancement factor of 10<sup>3</sup> along with an increase in the rate of catalytic coupling. The results of this study demonstrate the successful application of plasmonic Mg nanoparticles in sensing and plasmon-enhanced catalysis.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c06858\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c06858","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

某些金属的纳米结构可以维持局部表面等离子体共振,即入射光激发自由电子的集体振荡。这种效应会产生与波长相关的吸收和散射,增强金属表面的入射电场,并产生热载流子作为衰变产物。增强的电场可用于放大表面增强拉曼散射(SERS)中的光谱信号,而热载流子则可用于催化应用。近年来,替代传统等离子金和银的更廉价、更丰富的地球资源日益受到关注。在这里,我们展示了质子镁纳米粒子在激光照射下增强拉曼散射和驱动化学转化的能力。通过光学光谱学和扫描透射电子显微镜以及电子能量损失光谱学,并在数值模拟的支持下,对镁纳米粒子的质子特性进行了块体和单颗粒水平的表征。通过使用 4-巯基苯甲酸和 4-硝基苯硫醇,在 532 和 633 纳米波长处获得了 ∼102 的 SERS 增强因子。此外,在 532 纳米激发波长下,在没有还原剂的情况下,纳米镁粒子表面观察到 4-硝基苯硫醇与 4,4'-二巯基偶氮苯的还原偶联,这表明这是一个等离子体驱动的催化过程。用钯进行装饰后,纳米镁结构的增强系数达到 103,同时催化耦合的速率也有所提高。这项研究结果证明了等离子镁纳米粒子在传感和等离子体增强催化方面的成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis.

Nanostructures of some metals can sustain localized surface plasmon resonances, collective oscillations of free electrons excited by incident light. This effect results in wavelength-dependent absorption and scattering, enhancement of the incident electric field at the metal surface, and generation of hot carriers as a decay product. The enhanced electric field can be utilized to amplify the spectroscopic signal in surface-enhanced Raman scattering (SERS), while hot carriers can be exploited for catalytic applications. In recent years, cheaper and more earth abundant alternatives to traditional plasmonic Au and Ag have gained growing attention. Here, we demonstrate the ability of plasmonic Mg nanoparticles to enhance Raman scattering and drive chemical transformations upon laser irradiation. The plasmonic properties of Mg nanoparticles are characterized at the bulk and single particle level by optical spectroscopy and scanning transmission electron microscopy coupled with electron energy-loss spectroscopy and supported by numerical simulations. SERS enhancement factors of ∼102 at 532 and 633 nm are obtained using 4-mercaptobenzoic acid and 4-nitrobenzenethiol. Furthermore, the reductive coupling of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene is observed on the surface of Mg nanoparticles under 532 nm excitation in the absence of reducing agents, indicating a plasmon-driven catalytic process. Once decorated with Pd, Mg nanostructures display an enhancement factor of 103 along with an increase in the rate of catalytic coupling. The results of this study demonstrate the successful application of plasmonic Mg nanoparticles in sensing and plasmon-enhanced catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
23.81%-Efficiency Flexible Inverted Perovskite Solar Cells with Enhanced Stability and Flexibility via a Lewis Base Passivation. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. Direct Optical Patterning of Metal-Organic Frameworks via Photoacid-Induced Etching. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. Transforming Albumin into a Trojan Horse of Immunotherapy-Resistant Colorectal Cancer with a High Microsatellite Instability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1