瓶式纳米马达可放大肿瘤氧化应激,从而增强钙超载/化学动力学疗法。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-04 DOI:10.1002/smll.202404402
Yuejun Jiang, Cong Xu, Yunshi Li, Hong Wang, Lu Liu, Yicheng Ye, Junbin Gao, Hao Tian, Fei Peng, Yingfeng Tu, Yingjia Li
{"title":"瓶式纳米马达可放大肿瘤氧化应激,从而增强钙超载/化学动力学疗法。","authors":"Yuejun Jiang, Cong Xu, Yunshi Li, Hong Wang, Lu Liu, Yicheng Ye, Junbin Gao, Hao Tian, Fei Peng, Yingfeng Tu, Yingjia Li","doi":"10.1002/smll.202404402","DOIUrl":null,"url":null,"abstract":"<p><p>Developing multifunctional, stimuli-responsive nanomedicine is intriguing because it has the potential to effectively treat cancer. Yet, poor tumor penetration of nanodrugs results in limited antitumor efficacy. Herein, an oxygen-driven silicon-based nanomotor (Si-motor) loaded with MnO and CaO<sub>2</sub> nanoparticles is developed, which can move in tumor microenvironment (TME) by the cascade reaction of CaO<sub>2</sub> and MnO. Under acidic TME, CaO<sub>2</sub> reacts with acid to release Ca<sup>2+</sup> to induce mitochondrial damage and simultaneously produces O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>, when the loaded MnO exerts Fenton-like activity to produce ·OH and O<sub>2</sub> based on the produced H<sub>2</sub>O<sub>2</sub>. The generated O<sub>2</sub> drives Si-motor forward, thus endowing active delivery capability of the formed motors in TME. Meanwhile, MnO with glutathione (GSH) depletion ability further prevents reactive oxygen species (ROS) from being destroyed. Such TME actuated Si-motor with enhanced cellular uptake and deep penetration provides amplification of synergistic oxidative stresscaused by intracellular Ca<sup>2 +</sup> overloading, GSH depletion induced by Mn<sup>2+</sup>, and Mn<sup>2+</sup> mediated chemodynamic treatment (CDT), leading to excellent tumor cell death. The created nanomotor may offer an effective platform for active synergistic cancer treatment.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bottle Nanomotors Amplify Tumor Oxidative Stress for Enhanced Calcium Overload/Chemodynamic Therapy.\",\"authors\":\"Yuejun Jiang, Cong Xu, Yunshi Li, Hong Wang, Lu Liu, Yicheng Ye, Junbin Gao, Hao Tian, Fei Peng, Yingfeng Tu, Yingjia Li\",\"doi\":\"10.1002/smll.202404402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing multifunctional, stimuli-responsive nanomedicine is intriguing because it has the potential to effectively treat cancer. Yet, poor tumor penetration of nanodrugs results in limited antitumor efficacy. Herein, an oxygen-driven silicon-based nanomotor (Si-motor) loaded with MnO and CaO<sub>2</sub> nanoparticles is developed, which can move in tumor microenvironment (TME) by the cascade reaction of CaO<sub>2</sub> and MnO. Under acidic TME, CaO<sub>2</sub> reacts with acid to release Ca<sup>2+</sup> to induce mitochondrial damage and simultaneously produces O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>, when the loaded MnO exerts Fenton-like activity to produce ·OH and O<sub>2</sub> based on the produced H<sub>2</sub>O<sub>2</sub>. The generated O<sub>2</sub> drives Si-motor forward, thus endowing active delivery capability of the formed motors in TME. Meanwhile, MnO with glutathione (GSH) depletion ability further prevents reactive oxygen species (ROS) from being destroyed. Such TME actuated Si-motor with enhanced cellular uptake and deep penetration provides amplification of synergistic oxidative stresscaused by intracellular Ca<sup>2 +</sup> overloading, GSH depletion induced by Mn<sup>2+</sup>, and Mn<sup>2+</sup> mediated chemodynamic treatment (CDT), leading to excellent tumor cell death. The created nanomotor may offer an effective platform for active synergistic cancer treatment.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202404402\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202404402","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发多功能、刺激响应型纳米药物令人感兴趣,因为它具有有效治疗癌症的潜力。然而,纳米药物的肿瘤穿透性较差,导致抗肿瘤效果有限。本文开发了一种负载氧化锰和二氧化钙纳米颗粒的氧驱动硅基纳米马达(Si-motor),它能通过二氧化钙和氧化锰的级联反应在肿瘤微环境(TME)中移动。在酸性肿瘤微环境中,CaO2 与酸反应释放 Ca2+,诱导线粒体损伤,同时产生 O2 和 H2O2。产生的 O2 推动 Si-马达前进,从而赋予在 TME 中形成的马达主动输送能力。同时,具有谷胱甘肽(GSH)消耗能力的氧化锰还能进一步防止活性氧(ROS)被破坏。这种由 TME 驱动的 Si 电机具有更强的细胞摄取能力和更深的穿透力,可放大由细胞内 Ca2 + 超载、Mn2+ 诱导的 GSH 消耗和 Mn2+ 介导的化学动力学治疗(CDT)引起的协同氧化应激,从而导致肿瘤细胞死亡。这种纳米马达可为癌症的主动协同治疗提供一个有效的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bottle Nanomotors Amplify Tumor Oxidative Stress for Enhanced Calcium Overload/Chemodynamic Therapy.

Developing multifunctional, stimuli-responsive nanomedicine is intriguing because it has the potential to effectively treat cancer. Yet, poor tumor penetration of nanodrugs results in limited antitumor efficacy. Herein, an oxygen-driven silicon-based nanomotor (Si-motor) loaded with MnO and CaO2 nanoparticles is developed, which can move in tumor microenvironment (TME) by the cascade reaction of CaO2 and MnO. Under acidic TME, CaO2 reacts with acid to release Ca2+ to induce mitochondrial damage and simultaneously produces O2 and H2O2, when the loaded MnO exerts Fenton-like activity to produce ·OH and O2 based on the produced H2O2. The generated O2 drives Si-motor forward, thus endowing active delivery capability of the formed motors in TME. Meanwhile, MnO with glutathione (GSH) depletion ability further prevents reactive oxygen species (ROS) from being destroyed. Such TME actuated Si-motor with enhanced cellular uptake and deep penetration provides amplification of synergistic oxidative stresscaused by intracellular Ca2 + overloading, GSH depletion induced by Mn2+, and Mn2+ mediated chemodynamic treatment (CDT), leading to excellent tumor cell death. The created nanomotor may offer an effective platform for active synergistic cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A pH-Sensitive Glucose Oxidase and Hemin Coordination Micelle for Multi-Enzyme Cascade and Amplified Cancer Chemodynamic Therapy. Achieving Ultra-Long Cycle Life of Zn Anode Using ZnSn(OH)6 Coating Layer via Desolvation Effect and Uniform Zn2+ Flux. Advancing Zinc Anodes: Strategies for Enhanced Performance in Aqueous Zinc-Ion Batteries. Cation-π Interactions Based Conductive Hydrogels with Slide-Ring Structure Toward Super Long-Time in-air/Underwater Linear Sensing and Communication. Cutting-Edge Progress in Aqueous Zn-S Batteries: Innovations in Cathodes, Electrolytes, and Mediators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1