从淀粉样蛋白、tau 和神经退行性病变的横断面识别纵向认知恢复力。

IF 7.9 1区 医学 Q1 CLINICAL NEUROLOGY Alzheimer's Research & Therapy Pub Date : 2024-07-03 DOI:10.1186/s13195-024-01510-y
Rory Boyle, Diana L Townsend, Hannah M Klinger, Catherine E Scanlon, Ziwen Yuan, Gillian T Coughlan, Mabel Seto, Zahra Shirzadi, Wai-Ying Wendy Yau, Roos J Jutten, Christoph Schneider, Michelle E Farrell, Bernard J Hanseeuw, Elizabeth C Mormino, Hyun-Sik Yang, Kathryn V Papp, Rebecca E Amariglio, Heidi I L Jacobs, Julie C Price, Jasmeer P Chhatwal, Aaron P Schultz, Michael J Properzi, Dorene M Rentz, Keith A Johnson, Reisa A Sperling, Timothy J Hohman, Michael C Donohue, Rachel F Buckley
{"title":"从淀粉样蛋白、tau 和神经退行性病变的横断面识别纵向认知恢复力。","authors":"Rory Boyle, Diana L Townsend, Hannah M Klinger, Catherine E Scanlon, Ziwen Yuan, Gillian T Coughlan, Mabel Seto, Zahra Shirzadi, Wai-Ying Wendy Yau, Roos J Jutten, Christoph Schneider, Michelle E Farrell, Bernard J Hanseeuw, Elizabeth C Mormino, Hyun-Sik Yang, Kathryn V Papp, Rebecca E Amariglio, Heidi I L Jacobs, Julie C Price, Jasmeer P Chhatwal, Aaron P Schultz, Michael J Properzi, Dorene M Rentz, Keith A Johnson, Reisa A Sperling, Timothy J Hohman, Michael C Donohue, Rachel F Buckley","doi":"10.1186/s13195-024-01510-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR.</p><p><strong>Methods: </strong>We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aβ, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women).</p><p><strong>Results: </strong>The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline.</p><p><strong>Conclusion: </strong>These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220971/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying longitudinal cognitive resilience from cross-sectional amyloid, tau, and neurodegeneration.\",\"authors\":\"Rory Boyle, Diana L Townsend, Hannah M Klinger, Catherine E Scanlon, Ziwen Yuan, Gillian T Coughlan, Mabel Seto, Zahra Shirzadi, Wai-Ying Wendy Yau, Roos J Jutten, Christoph Schneider, Michelle E Farrell, Bernard J Hanseeuw, Elizabeth C Mormino, Hyun-Sik Yang, Kathryn V Papp, Rebecca E Amariglio, Heidi I L Jacobs, Julie C Price, Jasmeer P Chhatwal, Aaron P Schultz, Michael J Properzi, Dorene M Rentz, Keith A Johnson, Reisa A Sperling, Timothy J Hohman, Michael C Donohue, Rachel F Buckley\",\"doi\":\"10.1186/s13195-024-01510-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR.</p><p><strong>Methods: </strong>We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aβ, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women).</p><p><strong>Results: </strong>The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline.</p><p><strong>Conclusion: </strong>These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.</p>\",\"PeriodicalId\":7516,\"journal\":{\"name\":\"Alzheimer's Research & Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer's Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13195-024-01510-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-024-01510-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:利用阿尔茨海默病(AD)成像生物标志物和纵向认知数据,我们可以在活体中建立对AD病理的认知恢复力(CR)证据。在此,我们对认知功能未受损的老年人样本进行了潜类混合建模,调整了性别、基线年龄以及淀粉样蛋白、tau和神经变性的神经影像生物标志物,以确定CR的纵向轨迹:我们确定了200名哈佛大学脑老化研究(HABS)参与者(平均年龄=71.89岁,SD=9.41岁,59%为女性),他们在基线时认知功能未受损,在进行一次淀粉样蛋白-PET、tau-PET和结构性核磁共振成像后进行了2个或更多时间点的认知评估。我们研究了以纵向认知为因变量,以基线时间、基线年龄、性别、新皮质 Aβ、内侧 tau 和调整后海马体积为自变量的潜类混合模型。然后,我们通过一个偏好模型研究了已确定的亚组中 CR 相关因素的组间差异。最后,我们将偏好模型应用于阿尔茨海默病神经影像倡议(ADNI;n = 160,平均年龄 = 73.9 岁,SD = 7.6 岁,60% 为女性)的数据集:偏好模型确定了 3 个潜在亚组,我们将其称为正常亚组(占 HABS 样本的 71%)、恢复力亚组(22.5%)和衰退亚组(6.5%)。抗逆亚组表现出较高的基线认知能力和稳定的认知斜率。他们与其他群体的区别在于语言智能和过去的认知活动水平较高。在 ADNI 中,该模型确定了一个较大的正常亚组(88.1%)、一个较小的复原亚组(6.3%)和一个认知基线较低的下降组(5.6%):这些研究结果证明了数据驱动法在临床前注意力缺失症中识别纵向CR组的价值。通过这种方法,我们确定了一个CR亚组,该亚组反映了基于以往文献的预期特征、较高的语言智能水平和以往的认知活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying longitudinal cognitive resilience from cross-sectional amyloid, tau, and neurodegeneration.

Background: Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR.

Methods: We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aβ, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women).

Results: The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline.

Conclusion: These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Alzheimer's Research & Therapy
Alzheimer's Research & Therapy 医学-神经病学
CiteScore
13.10
自引率
3.30%
发文量
172
审稿时长
>12 weeks
期刊介绍: Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.
期刊最新文献
Facial aging, cognitive impairment, and dementia risk. Exploring easily accessible neurophysiological biomarkers for predicting Alzheimer's disease progression: a systematic review. Sex-specific risk factors and clinical dementia outcomes for white matter hyperintensities in a large South Korean cohort. Perivascular space enlargement accelerates in ageing and Alzheimer's disease pathology: evidence from a three-year longitudinal multicentre study. Assessing the metabolism of the olfactory circuit by use of 18F-FDG PET-CT imaging in patients suspected of suffering from Alzheimer's disease or frontotemporal dementia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1