{"title":"评估精子质量和男性生育能力:使用公猪精子和精浆中的分子标记。","authors":"","doi":"10.1016/j.anireprosci.2024.107545","DOIUrl":null,"url":null,"abstract":"<div><div><span><span><span>In pig production, the optimization of </span>artificial insemination<span> (AI) efficiency significantly relies on the accurate assessment of semen quality and fertility of boars. Traditional methods such as conventional seminogram techniques, although long-standing, exhibit limited sensitivity in predicting boar fertility, warranting the exploration of novel molecular markers. This review synthesizes the current knowledge on the utilization of molecular markers for semen quality evaluation and </span></span>male fertility prediction in boars, providing an in-depth examination of molecular markers in this context. Specifically, the present work delves into the potential of OMICs technologies, encompassing </span>genetic<span><span> and genomic approaches, transcriptomics, </span>proteomics<span><span>, and metabolomics<span>. A diverse array of molecular markers, including genomic regions associated with sperm quality and male fertility, chromatin integrity, mitochondrial </span></span>DNA content<span>, mRNA and non-coding RNA signatures, as well as proteins and metabolites in sperm and seminal plasma, are identified as promising molecular markers for fertility prediction in boars. Furthermore, the need of validating biomarkers and their practical implementation in AI centres is here emphasized. Addressing these considerations and integrating molecular markers within the swine breeding field holds the potential to enhance reproductive management practices and optimize productivity in boar breeding programs. This integration can significantly improve overall efficiency within the pig breeding industry.</span></span></span></div></div>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":"269 ","pages":"Article 107545"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of sperm quality and male fertility: The use of molecular markers in boar sperm and seminal plasma\",\"authors\":\"\",\"doi\":\"10.1016/j.anireprosci.2024.107545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><span><span>In pig production, the optimization of </span>artificial insemination<span> (AI) efficiency significantly relies on the accurate assessment of semen quality and fertility of boars. Traditional methods such as conventional seminogram techniques, although long-standing, exhibit limited sensitivity in predicting boar fertility, warranting the exploration of novel molecular markers. This review synthesizes the current knowledge on the utilization of molecular markers for semen quality evaluation and </span></span>male fertility prediction in boars, providing an in-depth examination of molecular markers in this context. Specifically, the present work delves into the potential of OMICs technologies, encompassing </span>genetic<span><span> and genomic approaches, transcriptomics, </span>proteomics<span><span>, and metabolomics<span>. A diverse array of molecular markers, including genomic regions associated with sperm quality and male fertility, chromatin integrity, mitochondrial </span></span>DNA content<span>, mRNA and non-coding RNA signatures, as well as proteins and metabolites in sperm and seminal plasma, are identified as promising molecular markers for fertility prediction in boars. Furthermore, the need of validating biomarkers and their practical implementation in AI centres is here emphasized. Addressing these considerations and integrating molecular markers within the swine breeding field holds the potential to enhance reproductive management practices and optimize productivity in boar breeding programs. This integration can significantly improve overall efficiency within the pig breeding industry.</span></span></span></div></div>\",\"PeriodicalId\":7880,\"journal\":{\"name\":\"Animal Reproduction Science\",\"volume\":\"269 \",\"pages\":\"Article 107545\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Reproduction Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378432024001362\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378432024001362","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Evaluation of sperm quality and male fertility: The use of molecular markers in boar sperm and seminal plasma
In pig production, the optimization of artificial insemination (AI) efficiency significantly relies on the accurate assessment of semen quality and fertility of boars. Traditional methods such as conventional seminogram techniques, although long-standing, exhibit limited sensitivity in predicting boar fertility, warranting the exploration of novel molecular markers. This review synthesizes the current knowledge on the utilization of molecular markers for semen quality evaluation and male fertility prediction in boars, providing an in-depth examination of molecular markers in this context. Specifically, the present work delves into the potential of OMICs technologies, encompassing genetic and genomic approaches, transcriptomics, proteomics, and metabolomics. A diverse array of molecular markers, including genomic regions associated with sperm quality and male fertility, chromatin integrity, mitochondrial DNA content, mRNA and non-coding RNA signatures, as well as proteins and metabolites in sperm and seminal plasma, are identified as promising molecular markers for fertility prediction in boars. Furthermore, the need of validating biomarkers and their practical implementation in AI centres is here emphasized. Addressing these considerations and integrating molecular markers within the swine breeding field holds the potential to enhance reproductive management practices and optimize productivity in boar breeding programs. This integration can significantly improve overall efficiency within the pig breeding industry.
期刊介绍:
Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction.
The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques.
The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.