{"title":"在高盐度条件下,利用盐碱地区发现的白芒花改善桉树幼苗的生长。","authors":"Rattima Wanroon, Nisa Leksungnoen, Tharnrat Kaewgrajang","doi":"10.1080/00275514.2024.2360607","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity is an abiotic factor limiting plant fitness and therefore forest crop productivity, and salt-affected areas have been expanding throughout the world. Ectomycorrhizal (ECM) fungi can improve the salt tolerance of woody plants, including <i>Eucalyptus</i> species To screen for salt-resistant <i>Pisolithus albus</i> (PA) isolates, 16 PA isolates were cultivated on modified Melin-Norkrans agar containing NaCl at concentrations of 0, 10, 20, and 30 dS m<sup>-1</sup>. The <i>P. albus</i> isolate PA33 had the greatest salt resistance under 10 and 20 dS m<sup>-1</sup> NaCl, which are soil salinity levels in salt-affected areas of Thailand. We studied the effect of PA33 on <i>Eucalyptus camaldulensis</i> × <i>E. pellita</i> cuttings under salt stress (0 and 16 dS m<sup>-1</sup>) for 1 month. PA enhanced the growth of the <i>Eucalyptus</i> seedlings, as indicated by higher relative growth rates in height and root collar diameter of inoculated seedlings compared with non-inoculated seedlings. Moreover, the inoculated seedlings had less cell damage from NaCl, as indicated by significantly lesser leaf thickness and electrolyte leakage than the controls. These findings could lead to practices conferring socioeconomic and environmental benefits, as abandoned salt-affected areas could be reclaimed using such <i>Eucalyptus</i> seedlings inoculated with salt-tolerant ECM fungi.</p>","PeriodicalId":18779,"journal":{"name":"Mycologia","volume":" ","pages":"629-641"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of <i>Pisolithus albus</i> found in saline areas to improve the growth of <i>Eucalyptus</i> seedlings under high salinity conditions.\",\"authors\":\"Rattima Wanroon, Nisa Leksungnoen, Tharnrat Kaewgrajang\",\"doi\":\"10.1080/00275514.2024.2360607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salinity is an abiotic factor limiting plant fitness and therefore forest crop productivity, and salt-affected areas have been expanding throughout the world. Ectomycorrhizal (ECM) fungi can improve the salt tolerance of woody plants, including <i>Eucalyptus</i> species To screen for salt-resistant <i>Pisolithus albus</i> (PA) isolates, 16 PA isolates were cultivated on modified Melin-Norkrans agar containing NaCl at concentrations of 0, 10, 20, and 30 dS m<sup>-1</sup>. The <i>P. albus</i> isolate PA33 had the greatest salt resistance under 10 and 20 dS m<sup>-1</sup> NaCl, which are soil salinity levels in salt-affected areas of Thailand. We studied the effect of PA33 on <i>Eucalyptus camaldulensis</i> × <i>E. pellita</i> cuttings under salt stress (0 and 16 dS m<sup>-1</sup>) for 1 month. PA enhanced the growth of the <i>Eucalyptus</i> seedlings, as indicated by higher relative growth rates in height and root collar diameter of inoculated seedlings compared with non-inoculated seedlings. Moreover, the inoculated seedlings had less cell damage from NaCl, as indicated by significantly lesser leaf thickness and electrolyte leakage than the controls. These findings could lead to practices conferring socioeconomic and environmental benefits, as abandoned salt-affected areas could be reclaimed using such <i>Eucalyptus</i> seedlings inoculated with salt-tolerant ECM fungi.</p>\",\"PeriodicalId\":18779,\"journal\":{\"name\":\"Mycologia\",\"volume\":\" \",\"pages\":\"629-641\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycologia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/00275514.2024.2360607\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/00275514.2024.2360607","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
The use of Pisolithus albus found in saline areas to improve the growth of Eucalyptus seedlings under high salinity conditions.
Salinity is an abiotic factor limiting plant fitness and therefore forest crop productivity, and salt-affected areas have been expanding throughout the world. Ectomycorrhizal (ECM) fungi can improve the salt tolerance of woody plants, including Eucalyptus species To screen for salt-resistant Pisolithus albus (PA) isolates, 16 PA isolates were cultivated on modified Melin-Norkrans agar containing NaCl at concentrations of 0, 10, 20, and 30 dS m-1. The P. albus isolate PA33 had the greatest salt resistance under 10 and 20 dS m-1 NaCl, which are soil salinity levels in salt-affected areas of Thailand. We studied the effect of PA33 on Eucalyptus camaldulensis × E. pellita cuttings under salt stress (0 and 16 dS m-1) for 1 month. PA enhanced the growth of the Eucalyptus seedlings, as indicated by higher relative growth rates in height and root collar diameter of inoculated seedlings compared with non-inoculated seedlings. Moreover, the inoculated seedlings had less cell damage from NaCl, as indicated by significantly lesser leaf thickness and electrolyte leakage than the controls. These findings could lead to practices conferring socioeconomic and environmental benefits, as abandoned salt-affected areas could be reclaimed using such Eucalyptus seedlings inoculated with salt-tolerant ECM fungi.
期刊介绍:
International in coverage, Mycologia presents recent advances in mycology, emphasizing all aspects of the biology of Fungi and fungus-like organisms, including Lichens, Oomycetes and Slime Molds. The Journal emphasizes subjects including applied biology, biochemistry, cell biology, development, ecology, evolution, genetics, genomics, molecular biology, morphology, new techniques, animal or plant pathology, phylogenetics, physiology, aspects of secondary metabolism, systematics, and ultrastructure. In addition to research articles, reviews and short notes, Mycologia also includes invited papers based on presentations from the Annual Conference of the Mycological Society of America, such as Karling Lectures or Presidential Addresses.