以元蛋白组学为依据的化学计量学模型揭示了湿地微生物群落对氧气和硫酸盐暴露的反应。

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY npj Biofilms and Microbiomes Pub Date : 2024-07-03 DOI:10.1038/s41522-024-00525-5
Dongyu Wang, Pieter Candry, Kristopher A Hunt, Zachary Flinkstrom, Zheng Shi, Yunlong Liu, Neil Q Wofford, Michael J McInerney, Ralph S Tanner, Kara B De Leόn, Jizhong Zhou, Mari-Karoliina H Winkler, David A Stahl, Chongle Pan
{"title":"以元蛋白组学为依据的化学计量学模型揭示了湿地微生物群落对氧气和硫酸盐暴露的反应。","authors":"Dongyu Wang, Pieter Candry, Kristopher A Hunt, Zachary Flinkstrom, Zheng Shi, Yunlong Liu, Neil Q Wofford, Michael J McInerney, Ralph S Tanner, Kara B De Leόn, Jizhong Zhou, Mari-Karoliina H Winkler, David A Stahl, Chongle Pan","doi":"10.1038/s41522-024-00525-5","DOIUrl":null,"url":null,"abstract":"<p><p>Climate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O<sub>2</sub>) during droughts, or to sulfate (SO<sub>4</sub><sup>2-</sup>) as a result of sea level rise. How these stressors - separately and together - impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> levels on microbial methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) emissions. The results uncovered the adaptive responses of this community to changes in SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> availability and identified altered microbial guilds and metabolic processes driving CH<sub>4</sub> and CO<sub>2</sub> emissions. Elevated SO<sub>4</sub><sup>2-</sup> reduced CH<sub>4</sub> emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O<sub>2</sub> shifted the greenhouse gas emissions from CH<sub>4</sub> to CO<sub>2</sub>. The metabolic effects of combined SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> exposures on CH<sub>4</sub> and CO<sub>2</sub> emissions were similar to those of O<sub>2</sub> exposure alone. The reduction in CH<sub>4</sub> emission by increased SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> was much greater than the concomitant increase in CO<sub>2</sub> emission. Thus, greater SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> exposure in wetlands is expected to reduce the aggregate warming effect of CH<sub>4</sub> and CO<sub>2</sub>. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO<sub>4</sub><sup>2-</sup> to produce acetate, H<sub>2</sub>S, and CO<sub>2</sub> when SO<sub>4</sub><sup>2-</sup> is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH<sub>4</sub> and CO<sub>2</sub> emissions from wetlands under future climate scenarios.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222425/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metaproteomics-informed stoichiometric modeling reveals the responses of wetland microbial communities to oxygen and sulfate exposure.\",\"authors\":\"Dongyu Wang, Pieter Candry, Kristopher A Hunt, Zachary Flinkstrom, Zheng Shi, Yunlong Liu, Neil Q Wofford, Michael J McInerney, Ralph S Tanner, Kara B De Leόn, Jizhong Zhou, Mari-Karoliina H Winkler, David A Stahl, Chongle Pan\",\"doi\":\"10.1038/s41522-024-00525-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O<sub>2</sub>) during droughts, or to sulfate (SO<sub>4</sub><sup>2-</sup>) as a result of sea level rise. How these stressors - separately and together - impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> levels on microbial methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) emissions. The results uncovered the adaptive responses of this community to changes in SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> availability and identified altered microbial guilds and metabolic processes driving CH<sub>4</sub> and CO<sub>2</sub> emissions. Elevated SO<sub>4</sub><sup>2-</sup> reduced CH<sub>4</sub> emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O<sub>2</sub> shifted the greenhouse gas emissions from CH<sub>4</sub> to CO<sub>2</sub>. The metabolic effects of combined SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> exposures on CH<sub>4</sub> and CO<sub>2</sub> emissions were similar to those of O<sub>2</sub> exposure alone. The reduction in CH<sub>4</sub> emission by increased SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> was much greater than the concomitant increase in CO<sub>2</sub> emission. Thus, greater SO<sub>4</sub><sup>2-</sup> and O<sub>2</sub> exposure in wetlands is expected to reduce the aggregate warming effect of CH<sub>4</sub> and CO<sub>2</sub>. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO<sub>4</sub><sup>2-</sup> to produce acetate, H<sub>2</sub>S, and CO<sub>2</sub> when SO<sub>4</sub><sup>2-</sup> is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH<sub>4</sub> and CO<sub>2</sub> emissions from wetlands under future climate scenarios.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222425/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-024-00525-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00525-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

气候变化会严重影响湿地土壤的温室气体排放。具体来说,湿地土壤可能会在干旱期间受到氧气(O2)的影响,或因海平面上升而受到硫酸盐(SO42-)的影响。目前还不清楚这些压力因素是如何单独或共同影响湿地中驱动碳循环的微生物食物网的。为了研究这个问题,我们整合了地球化学分析、蛋白质基因组学和化学计量学模型,以描述 SO42- 和 O2 水平升高对微生物甲烷(CH4)和二氧化碳(CO2)排放的影响。研究结果揭示了该群落对 SO42- 和 O2 可用性变化的适应性反应,并确定了驱动 CH4 和 CO2 排放的微生物行会和代谢过程的改变。SO42-的升高减少了CH4的排放,而养氢型甲烷生成的抑制作用要大于乙酰甲烷生成的抑制作用。O2 升高使温室气体排放从 CH4 转向 CO2。联合暴露于 SO42- 和 O2 对 CH4 和 CO2 排放的代谢影响与单独暴露于 O2 的影响相似。增加 SO42- 和 O2 所减少的 CH4 排放量远远大于同时增加的 CO2 排放量。因此,湿地中更多的 SO42- 和 O2 暴露预计会减少 CH4 和 CO2 的总体变暖效应。元蛋白质组学和化学计量学模型揭示了一个涉及碳代谢的独特子网络,当 SO42- 在缺氧条件下升高时,该子网络将乳酸和 SO42- 转化为乙酸、H2S 和 CO2。这项研究为预测未来气候情景下湿地的甲烷和二氧化碳排放提供了更高的关键代谢过程定量分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metaproteomics-informed stoichiometric modeling reveals the responses of wetland microbial communities to oxygen and sulfate exposure.

Climate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O2) during droughts, or to sulfate (SO42-) as a result of sea level rise. How these stressors - separately and together - impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO42- and O2 levels on microbial methane (CH4) and carbon dioxide (CO2) emissions. The results uncovered the adaptive responses of this community to changes in SO42- and O2 availability and identified altered microbial guilds and metabolic processes driving CH4 and CO2 emissions. Elevated SO42- reduced CH4 emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O2 shifted the greenhouse gas emissions from CH4 to CO2. The metabolic effects of combined SO42- and O2 exposures on CH4 and CO2 emissions were similar to those of O2 exposure alone. The reduction in CH4 emission by increased SO42- and O2 was much greater than the concomitant increase in CO2 emission. Thus, greater SO42- and O2 exposure in wetlands is expected to reduce the aggregate warming effect of CH4 and CO2. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO42- to produce acetate, H2S, and CO2 when SO42- is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH4 and CO2 emissions from wetlands under future climate scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
期刊最新文献
Large-scale metagenomic assembly provide new insights into the genetic evolution of gut microbiomes in plateau ungulates. Microbial diversity and secondary metabolism potential in relation to dark alterations in Paleolithic Lascaux Cave. Combating biofilm-associated Klebsiella pneumoniae infections using a bovine microbial enzyme. Kinetics of imidazole propionate from orally delivered histidine in mice and humans. Autoinducer-2 relieves soil stress-induced dormancy of Bacillus velezensis by modulating sporulation signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1