Bokun Zhou, Qi Sheng, Xinzhuan Yao, Tong Li, Litang Lu
{"title":"过量表达来自山茶的 F-box 基因 CsBRC 增加了烟草和水稻的植株分枝。","authors":"Bokun Zhou, Qi Sheng, Xinzhuan Yao, Tong Li, Litang Lu","doi":"10.1002/pld3.618","DOIUrl":null,"url":null,"abstract":"<p><p>Tea plant (<i>Camellia sinensis</i> [<i>L</i>.]) is one of the most important crops in China, and tea branch is an important agronomic trait that determines the yield of tea plant. In previous work focused on GWAS that detecting GWAS signals related to plant architecture through whole genome re-sequencing of ancient tea plants, a gene locus TEA 029928 significantly related to plant type was found. Sequence alignment results showed that this gene belonged to the F-box family. We named it <i>CsBRC</i>. CsBRC-GFP fusion proteins were mainly localized in the plasma membrane. By comparing the phenotypes of <i>CsBRC</i> transgenic tobacco and WT tobacco, it was found that the number of branches of transgenic tobacco was significantly higher than that of wild-type tobacco. Through RNA-seq analysis, it was found that <i>CsBRC</i> affects the branching development of plants by regulating the expression of genes related to brassinosteroid synthesis pathway in plants. In addition, overexpression of <i>CsBRC</i> in rice could increase tiller number, grain length and width, and 1,000-grain weight.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 7","pages":"e618"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220506/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overexpression of <i>CsBRC</i>, an F-box gene from <i>Camellia sinensis</i>, increased the plant branching in tobacco and rice.\",\"authors\":\"Bokun Zhou, Qi Sheng, Xinzhuan Yao, Tong Li, Litang Lu\",\"doi\":\"10.1002/pld3.618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tea plant (<i>Camellia sinensis</i> [<i>L</i>.]) is one of the most important crops in China, and tea branch is an important agronomic trait that determines the yield of tea plant. In previous work focused on GWAS that detecting GWAS signals related to plant architecture through whole genome re-sequencing of ancient tea plants, a gene locus TEA 029928 significantly related to plant type was found. Sequence alignment results showed that this gene belonged to the F-box family. We named it <i>CsBRC</i>. CsBRC-GFP fusion proteins were mainly localized in the plasma membrane. By comparing the phenotypes of <i>CsBRC</i> transgenic tobacco and WT tobacco, it was found that the number of branches of transgenic tobacco was significantly higher than that of wild-type tobacco. Through RNA-seq analysis, it was found that <i>CsBRC</i> affects the branching development of plants by regulating the expression of genes related to brassinosteroid synthesis pathway in plants. In addition, overexpression of <i>CsBRC</i> in rice could increase tiller number, grain length and width, and 1,000-grain weight.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"8 7\",\"pages\":\"e618\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.618\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.618","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Overexpression of CsBRC, an F-box gene from Camellia sinensis, increased the plant branching in tobacco and rice.
Tea plant (Camellia sinensis [L.]) is one of the most important crops in China, and tea branch is an important agronomic trait that determines the yield of tea plant. In previous work focused on GWAS that detecting GWAS signals related to plant architecture through whole genome re-sequencing of ancient tea plants, a gene locus TEA 029928 significantly related to plant type was found. Sequence alignment results showed that this gene belonged to the F-box family. We named it CsBRC. CsBRC-GFP fusion proteins were mainly localized in the plasma membrane. By comparing the phenotypes of CsBRC transgenic tobacco and WT tobacco, it was found that the number of branches of transgenic tobacco was significantly higher than that of wild-type tobacco. Through RNA-seq analysis, it was found that CsBRC affects the branching development of plants by regulating the expression of genes related to brassinosteroid synthesis pathway in plants. In addition, overexpression of CsBRC in rice could increase tiller number, grain length and width, and 1,000-grain weight.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.