SlowMoMan:一款在二维嵌入中沿着用户绘制的轨迹发现重要特征的网络应用程序。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-06-21 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae095
Kiran Deol, Griffin M Weber, Yun William Yu
{"title":"SlowMoMan:一款在二维嵌入中沿着用户绘制的轨迹发现重要特征的网络应用程序。","authors":"Kiran Deol, Griffin M Weber, Yun William Yu","doi":"10.1093/bioadv/vbae095","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Nonlinear low-dimensional embeddings allow humans to visualize high-dimensional data, as is often seen in bioinformatics, where datasets may have tens of thousands of dimensions. However, relating the axes of a nonlinear embedding to the original dimensions is a nontrivial problem. In particular, humans may identify patterns or interesting subsections in the embedding, but cannot easily identify what those patterns correspond to in the original data.</p><p><strong>Results: </strong>Thus, we present SlowMoMan (SLOW Motions on MANifolds), a web application which allows the user to draw a one-dimensional path onto a 2D embedding. Then, by back-projecting the manifold to the original, high-dimensional space, we sort the original features such that those most discriminative along the manifold are ranked highly. We show a number of pertinent use cases for our tool, including trajectory inference, spatial transcriptomics, and automatic cell classification.</p><p><strong>Availability and implementation: </strong>Software: https://yunwilliamyu.github.io/SlowMoMan/; Code: https://github.com/yunwilliamyu/SlowMoMan.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220466/pdf/","citationCount":"0","resultStr":"{\"title\":\"SlowMoMan: a web app for discovery of important features along user-drawn trajectories in 2D embeddings.\",\"authors\":\"Kiran Deol, Griffin M Weber, Yun William Yu\",\"doi\":\"10.1093/bioadv/vbae095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Nonlinear low-dimensional embeddings allow humans to visualize high-dimensional data, as is often seen in bioinformatics, where datasets may have tens of thousands of dimensions. However, relating the axes of a nonlinear embedding to the original dimensions is a nontrivial problem. In particular, humans may identify patterns or interesting subsections in the embedding, but cannot easily identify what those patterns correspond to in the original data.</p><p><strong>Results: </strong>Thus, we present SlowMoMan (SLOW Motions on MANifolds), a web application which allows the user to draw a one-dimensional path onto a 2D embedding. Then, by back-projecting the manifold to the original, high-dimensional space, we sort the original features such that those most discriminative along the manifold are ranked highly. We show a number of pertinent use cases for our tool, including trajectory inference, spatial transcriptomics, and automatic cell classification.</p><p><strong>Availability and implementation: </strong>Software: https://yunwilliamyu.github.io/SlowMoMan/; Code: https://github.com/yunwilliamyu/SlowMoMan.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机非线性低维嵌入允许人类将高维数据可视化,这在生物信息学中很常见,因为数据集可能有成千上万个维度。然而,将非线性嵌入的轴与原始维度相关联是一个非难解决的问题。特别是,人类可以识别出嵌入中的模式或有趣的分段,但却无法轻易识别出这些模式在原始数据中的对应关系:因此,我们提出了SlowMoMan(SLOW Motions on MANifolds),这是一个网络应用程序,允许用户在二维嵌入上绘制一维路径。然后,通过将流形反向投影到原始的高维空间,我们对原始特征进行排序,使那些沿流形最具辨别力的特征排名靠前。我们展示了我们工具的一些相关用例,包括轨迹推断、空间转录组学和自动细胞分类:软件:https://yunwilliamyu.github.io/SlowMoMan/;代码:https://github.com/yunwilliamyu/SlowMoMan。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SlowMoMan: a web app for discovery of important features along user-drawn trajectories in 2D embeddings.

Motivation: Nonlinear low-dimensional embeddings allow humans to visualize high-dimensional data, as is often seen in bioinformatics, where datasets may have tens of thousands of dimensions. However, relating the axes of a nonlinear embedding to the original dimensions is a nontrivial problem. In particular, humans may identify patterns or interesting subsections in the embedding, but cannot easily identify what those patterns correspond to in the original data.

Results: Thus, we present SlowMoMan (SLOW Motions on MANifolds), a web application which allows the user to draw a one-dimensional path onto a 2D embedding. Then, by back-projecting the manifold to the original, high-dimensional space, we sort the original features such that those most discriminative along the manifold are ranked highly. We show a number of pertinent use cases for our tool, including trajectory inference, spatial transcriptomics, and automatic cell classification.

Availability and implementation: Software: https://yunwilliamyu.github.io/SlowMoMan/; Code: https://github.com/yunwilliamyu/SlowMoMan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1