利用理性无意识效用最大化实现可解释的深度图像分类

IF 8.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Signal Processing Pub Date : 2024-03-01 DOI:10.1109/JSTSP.2024.3381335
Kunal Pattanayak;Vikram Krishnamurthy;Adit Jain
{"title":"利用理性无意识效用最大化实现可解释的深度图像分类","authors":"Kunal Pattanayak;Vikram Krishnamurthy;Adit Jain","doi":"10.1109/JSTSP.2024.3381335","DOIUrl":null,"url":null,"abstract":"Can deep convolutional neural networks (CNNs) for image classification be interpreted as utility maximizers with information costs? By performing set-valued system identification for Bayesian decision systems, we demonstrate that deep CNNs behave equivalently (in terms of necessary and sufficient conditions) to rationally inattentive Bayesian utility maximizers, a generative model used extensively in economics for human decision-making. Our claim is based on approximately 500 numerical experiments on 5 widely used neural network architectures. The parameters of the resulting interpretable model are computed efficiently via convex feasibility algorithms. As a practical application, we also illustrate how the reconstructed interpretable model can predict the classification performance of deep CNNs with high accuracy. The theoretical foundation of our approach lies in Bayesian revealed preference studied in micro-economics. All our results are on GitHub and completely reproducible.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 2","pages":"168-183"},"PeriodicalIF":8.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable Deep Image Classification Using Rationally Inattentive Utility Maximization\",\"authors\":\"Kunal Pattanayak;Vikram Krishnamurthy;Adit Jain\",\"doi\":\"10.1109/JSTSP.2024.3381335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Can deep convolutional neural networks (CNNs) for image classification be interpreted as utility maximizers with information costs? By performing set-valued system identification for Bayesian decision systems, we demonstrate that deep CNNs behave equivalently (in terms of necessary and sufficient conditions) to rationally inattentive Bayesian utility maximizers, a generative model used extensively in economics for human decision-making. Our claim is based on approximately 500 numerical experiments on 5 widely used neural network architectures. The parameters of the resulting interpretable model are computed efficiently via convex feasibility algorithms. As a practical application, we also illustrate how the reconstructed interpretable model can predict the classification performance of deep CNNs with high accuracy. The theoretical foundation of our approach lies in Bayesian revealed preference studied in micro-economics. All our results are on GitHub and completely reproducible.\",\"PeriodicalId\":13038,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Signal Processing\",\"volume\":\"18 2\",\"pages\":\"168-183\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10490091/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10490091/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

用于图像分类的深度卷积神经网络(CNN)能否被解释为具有信息成本的效用最大化器?通过对贝叶斯决策系统进行集值系统识别,我们证明了深度卷积神经网络的行为(在必要条件和充分条件方面)等同于理性不注意的贝叶斯效用最大化者,这是经济学中广泛用于人类决策的生成模型。我们的观点基于对 5 种广泛使用的神经网络架构进行的约 500 次数值实验。由此产生的可解释模型的参数是通过凸可行性算法高效计算出来的。在实际应用中,我们还说明了重建的可解释模型如何高精度地预测深度 CNN 的分类性能。我们的方法的理论基础是微观经济学中研究的贝叶斯显现偏好。我们的所有成果都在 GitHub 上,完全可重复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretable Deep Image Classification Using Rationally Inattentive Utility Maximization
Can deep convolutional neural networks (CNNs) for image classification be interpreted as utility maximizers with information costs? By performing set-valued system identification for Bayesian decision systems, we demonstrate that deep CNNs behave equivalently (in terms of necessary and sufficient conditions) to rationally inattentive Bayesian utility maximizers, a generative model used extensively in economics for human decision-making. Our claim is based on approximately 500 numerical experiments on 5 widely used neural network architectures. The parameters of the resulting interpretable model are computed efficiently via convex feasibility algorithms. As a practical application, we also illustrate how the reconstructed interpretable model can predict the classification performance of deep CNNs with high accuracy. The theoretical foundation of our approach lies in Bayesian revealed preference studied in micro-economics. All our results are on GitHub and completely reproducible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing 工程技术-工程:电子与电气
CiteScore
19.00
自引率
1.30%
发文量
135
审稿时长
3 months
期刊介绍: The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others. The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.
期刊最新文献
Front Cover Table of Contents IEEE Signal Processing Society Information Introduction to the Special Issue Near-Field Signal Processing: Algorithms, Implementations and Applications IEEE Signal Processing Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1