Ming Niu;Zhonghua Kuang;Xiaohui Wang;Ning Ren;Ziru Sang;Tao Sun;Zheng Liu;Zhanli Hu;Zheng Gu;Yongfeng Yang
{"title":"双端读出闪烁体阵列 PET 探测器定时测量方法的比较","authors":"Ming Niu;Zhonghua Kuang;Xiaohui Wang;Ning Ren;Ziru Sang;Tao Sun;Zheng Liu;Zhanli Hu;Zheng Gu;Yongfeng Yang","doi":"10.1109/TRPMS.2024.3382990","DOIUrl":null,"url":null,"abstract":"The main focus of this work is to compare different timing measurement methods of individual silicon photomultiplier (SiPM) arrays and dual-ended readout PET detectors. Two lutetium yttrium oxyorthosilicate (LYSO) crystal arrays with \n<inline-formula> <tex-math>$3.10\\times 3.10\\times 20$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>${\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\n crystals, enhanced specular reflector (ESR), and barium sulfate (BaSO4) reflector and one LYSO crystal array with \n<inline-formula> <tex-math>$1.88\\times 1.88\\times 20$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>${\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\n crystals and \n<inline-formula> <tex-math>$\\rm BaSO_{4}$ </tex-math></inline-formula>\n reflector with dual-ended read out by \n<inline-formula> <tex-math>$8\\times 8$ </tex-math></inline-formula>\n SiPM arrays of \n<inline-formula> <tex-math>$3\\times 3$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>${\\mathrm { mm}}^{2}$ </tex-math></inline-formula>\n active pixel area were measured. Signals of the SiPM arrays were processed individually using 64 channel PETsys TOFPET2 application specific integrated circuits designed for time-of-flight PET applications. For the SiPM arrays, an energy square-weighted average timing method using the timings of the fastest 2 SiPM pixels was found to provide the best-coincidence timing resolutions (CTRs). For the dual-ended readout detectors, the method of using the energy-weighted average timings of the two SiPM arrays provided the best CTR of 234 ps for the detector using \n<inline-formula> <tex-math>$3.10\\times 3.10\\times 20$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>${\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\n crystals and ESR reflector, 239 ps for the detector using \n<inline-formula> <tex-math>$3.10\\times 3.10\\times 20$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>${\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\n crystals and \n<inline-formula> <tex-math>$\\rm BaSO_{4}$ </tex-math></inline-formula>\n reflector, and 275 ps for the detector using \n<inline-formula> <tex-math>$1.88\\times 1.88\\times 20$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>${\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\n crystals and \n<inline-formula> <tex-math>$\\rm BaSO_{4}$ </tex-math></inline-formula>\n reflector for an energy window of 410–610 keV. The dual-ended readout detectors developed in this work provide better CTRs than those of single-ended readout detectors and a high-3-D position resolution which can be used in the future to develop whole-body PET scanners to simultaneously achieve uniform high-spatial resolution, high sensitivity and high-timing resolution.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"607-617"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10485386","citationCount":"0","resultStr":"{\"title\":\"Comparison of Timing Measurement Methods of Dual-Ended Readout Scintillator Array PET Detectors\",\"authors\":\"Ming Niu;Zhonghua Kuang;Xiaohui Wang;Ning Ren;Ziru Sang;Tao Sun;Zheng Liu;Zhanli Hu;Zheng Gu;Yongfeng Yang\",\"doi\":\"10.1109/TRPMS.2024.3382990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main focus of this work is to compare different timing measurement methods of individual silicon photomultiplier (SiPM) arrays and dual-ended readout PET detectors. Two lutetium yttrium oxyorthosilicate (LYSO) crystal arrays with \\n<inline-formula> <tex-math>$3.10\\\\times 3.10\\\\times 20$ </tex-math></inline-formula>\\n-\\n<inline-formula> <tex-math>${\\\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\\n crystals, enhanced specular reflector (ESR), and barium sulfate (BaSO4) reflector and one LYSO crystal array with \\n<inline-formula> <tex-math>$1.88\\\\times 1.88\\\\times 20$ </tex-math></inline-formula>\\n-\\n<inline-formula> <tex-math>${\\\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\\n crystals and \\n<inline-formula> <tex-math>$\\\\rm BaSO_{4}$ </tex-math></inline-formula>\\n reflector with dual-ended read out by \\n<inline-formula> <tex-math>$8\\\\times 8$ </tex-math></inline-formula>\\n SiPM arrays of \\n<inline-formula> <tex-math>$3\\\\times 3$ </tex-math></inline-formula>\\n-\\n<inline-formula> <tex-math>${\\\\mathrm { mm}}^{2}$ </tex-math></inline-formula>\\n active pixel area were measured. Signals of the SiPM arrays were processed individually using 64 channel PETsys TOFPET2 application specific integrated circuits designed for time-of-flight PET applications. For the SiPM arrays, an energy square-weighted average timing method using the timings of the fastest 2 SiPM pixels was found to provide the best-coincidence timing resolutions (CTRs). For the dual-ended readout detectors, the method of using the energy-weighted average timings of the two SiPM arrays provided the best CTR of 234 ps for the detector using \\n<inline-formula> <tex-math>$3.10\\\\times 3.10\\\\times 20$ </tex-math></inline-formula>\\n-\\n<inline-formula> <tex-math>${\\\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\\n crystals and ESR reflector, 239 ps for the detector using \\n<inline-formula> <tex-math>$3.10\\\\times 3.10\\\\times 20$ </tex-math></inline-formula>\\n-\\n<inline-formula> <tex-math>${\\\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\\n crystals and \\n<inline-formula> <tex-math>$\\\\rm BaSO_{4}$ </tex-math></inline-formula>\\n reflector, and 275 ps for the detector using \\n<inline-formula> <tex-math>$1.88\\\\times 1.88\\\\times 20$ </tex-math></inline-formula>\\n-\\n<inline-formula> <tex-math>${\\\\mathrm { mm}}^{3}$ </tex-math></inline-formula>\\n crystals and \\n<inline-formula> <tex-math>$\\\\rm BaSO_{4}$ </tex-math></inline-formula>\\n reflector for an energy window of 410–610 keV. The dual-ended readout detectors developed in this work provide better CTRs than those of single-ended readout detectors and a high-3-D position resolution which can be used in the future to develop whole-body PET scanners to simultaneously achieve uniform high-spatial resolution, high sensitivity and high-timing resolution.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"8 6\",\"pages\":\"607-617\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10485386\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10485386/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10485386/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Comparison of Timing Measurement Methods of Dual-Ended Readout Scintillator Array PET Detectors
The main focus of this work is to compare different timing measurement methods of individual silicon photomultiplier (SiPM) arrays and dual-ended readout PET detectors. Two lutetium yttrium oxyorthosilicate (LYSO) crystal arrays with
$3.10\times 3.10\times 20$
-
${\mathrm { mm}}^{3}$
crystals, enhanced specular reflector (ESR), and barium sulfate (BaSO4) reflector and one LYSO crystal array with
$1.88\times 1.88\times 20$
-
${\mathrm { mm}}^{3}$
crystals and
$\rm BaSO_{4}$
reflector with dual-ended read out by
$8\times 8$
SiPM arrays of
$3\times 3$
-
${\mathrm { mm}}^{2}$
active pixel area were measured. Signals of the SiPM arrays were processed individually using 64 channel PETsys TOFPET2 application specific integrated circuits designed for time-of-flight PET applications. For the SiPM arrays, an energy square-weighted average timing method using the timings of the fastest 2 SiPM pixels was found to provide the best-coincidence timing resolutions (CTRs). For the dual-ended readout detectors, the method of using the energy-weighted average timings of the two SiPM arrays provided the best CTR of 234 ps for the detector using
$3.10\times 3.10\times 20$
-
${\mathrm { mm}}^{3}$
crystals and ESR reflector, 239 ps for the detector using
$3.10\times 3.10\times 20$
-
${\mathrm { mm}}^{3}$
crystals and
$\rm BaSO_{4}$
reflector, and 275 ps for the detector using
$1.88\times 1.88\times 20$
-
${\mathrm { mm}}^{3}$
crystals and
$\rm BaSO_{4}$
reflector for an energy window of 410–610 keV. The dual-ended readout detectors developed in this work provide better CTRs than those of single-ended readout detectors and a high-3-D position resolution which can be used in the future to develop whole-body PET scanners to simultaneously achieve uniform high-spatial resolution, high sensitivity and high-timing resolution.