Satya Shanmukharao Samatham, Jacob Casey, Adrienn Maria Szucs, Venkateswara Yenugonda, Christopher Burgio, Theo Siegrist, Arjun K. Pathak
{"title":"神户金属 ErMn6Sn6 中的扰动调谐三螺旋元磁性和三临界点","authors":"Satya Shanmukharao Samatham, Jacob Casey, Adrienn Maria Szucs, Venkateswara Yenugonda, Christopher Burgio, Theo Siegrist, Arjun K. Pathak","doi":"10.1038/s43246-024-00552-x","DOIUrl":null,"url":null,"abstract":"Kagome materials are of topical interest for their diverse quantum properties linked with correlated magnetism and topology. Here, we report anomalous hydrostatic pressure (p) effect on ErMn6Sn6 through isobaric and isothermal-isobaric magnetization measurements. Magnetic field (H) suppresses antiferromagnetic TN while simultaneously enhancing the ferrimagnetic TC by exhibiting dual metamagnetic transitions, arising from the triple-spiral-nature of Er and Mn spins. Counter-intuitively, pressure enhances both TC and TN with a growth rate of 74.4 K GPa−1 and 14.4 K GPa−1 respectively. Pressure unifies the dual metamagnetic transitions as illustrated through p-H phase diagrams at 140 and 200 K. Temperature-field-pressure (T-H, T-p) phase diagrams illustrate distinct field- and pressure-induced critical points at (Tcr = 246 K, Hcr = 23.3 kOe) and (Tcr = 435.8 K, pcr = 4.74 GPa) respectively. An unusual increase of magnetic entropy by pressure around Tcr and a putative pressure-induced tricritical point pave a unique way of tuning the magnetic properties of kagome magnets through simultaneous application of H and p. The kagome metal ErMn6Sn6 is known to display interesting physics. Here, the simultaneous effect of a magnetic field and pressure is investigated, revealing the role of the spiral behavior of magnetic layers on magnetic transition temperatures","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00552-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Perturbation-tuned triple spiral metamagnetism and tricritical point in kagome metal ErMn6Sn6\",\"authors\":\"Satya Shanmukharao Samatham, Jacob Casey, Adrienn Maria Szucs, Venkateswara Yenugonda, Christopher Burgio, Theo Siegrist, Arjun K. Pathak\",\"doi\":\"10.1038/s43246-024-00552-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kagome materials are of topical interest for their diverse quantum properties linked with correlated magnetism and topology. Here, we report anomalous hydrostatic pressure (p) effect on ErMn6Sn6 through isobaric and isothermal-isobaric magnetization measurements. Magnetic field (H) suppresses antiferromagnetic TN while simultaneously enhancing the ferrimagnetic TC by exhibiting dual metamagnetic transitions, arising from the triple-spiral-nature of Er and Mn spins. Counter-intuitively, pressure enhances both TC and TN with a growth rate of 74.4 K GPa−1 and 14.4 K GPa−1 respectively. Pressure unifies the dual metamagnetic transitions as illustrated through p-H phase diagrams at 140 and 200 K. Temperature-field-pressure (T-H, T-p) phase diagrams illustrate distinct field- and pressure-induced critical points at (Tcr = 246 K, Hcr = 23.3 kOe) and (Tcr = 435.8 K, pcr = 4.74 GPa) respectively. An unusual increase of magnetic entropy by pressure around Tcr and a putative pressure-induced tricritical point pave a unique way of tuning the magnetic properties of kagome magnets through simultaneous application of H and p. The kagome metal ErMn6Sn6 is known to display interesting physics. Here, the simultaneous effect of a magnetic field and pressure is investigated, revealing the role of the spiral behavior of magnetic layers on magnetic transition temperatures\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00552-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00552-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00552-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
卡戈米材料因其与相关磁性和拓扑学有关的各种量子特性而备受关注。在这里,我们通过等压和等温-等压磁化测量,报告了 ErMn6Sn6 的反常静水压力(p)效应。磁场(H)在抑制反铁磁性 TN 的同时,还通过 Er 和 Mn 自旋的三重螺旋性质所产生的双元磁转变,增强了铁磁性 TC。与直觉相反的是,压力会同时增强 TC 和 TN,增长率分别为 74.4 K GPa-1 和 14.4 K GPa-1。温度-场-压力(T-H、T-p)相图显示,在(Tcr = 246 K,Hcr = 23.3 kOe)和(Tcr = 435.8 K,pcr = 4.74 GPa)分别存在不同的场临界点和压力临界点。在 Tcr 附近的压力作用下磁性熵的不寻常增加以及假定的压力诱导三临界点为通过同时应用 H 和 p 来调整卡戈梅磁体的磁性铺平了一条独特的道路。这里研究了磁场和压力的同时效应,揭示了磁层的螺旋行为对磁转变温度的作用
Perturbation-tuned triple spiral metamagnetism and tricritical point in kagome metal ErMn6Sn6
Kagome materials are of topical interest for their diverse quantum properties linked with correlated magnetism and topology. Here, we report anomalous hydrostatic pressure (p) effect on ErMn6Sn6 through isobaric and isothermal-isobaric magnetization measurements. Magnetic field (H) suppresses antiferromagnetic TN while simultaneously enhancing the ferrimagnetic TC by exhibiting dual metamagnetic transitions, arising from the triple-spiral-nature of Er and Mn spins. Counter-intuitively, pressure enhances both TC and TN with a growth rate of 74.4 K GPa−1 and 14.4 K GPa−1 respectively. Pressure unifies the dual metamagnetic transitions as illustrated through p-H phase diagrams at 140 and 200 K. Temperature-field-pressure (T-H, T-p) phase diagrams illustrate distinct field- and pressure-induced critical points at (Tcr = 246 K, Hcr = 23.3 kOe) and (Tcr = 435.8 K, pcr = 4.74 GPa) respectively. An unusual increase of magnetic entropy by pressure around Tcr and a putative pressure-induced tricritical point pave a unique way of tuning the magnetic properties of kagome magnets through simultaneous application of H and p. The kagome metal ErMn6Sn6 is known to display interesting physics. Here, the simultaneous effect of a magnetic field and pressure is investigated, revealing the role of the spiral behavior of magnetic layers on magnetic transition temperatures
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.