{"title":"用于直流断路器的低过电压比电压钳位电路回顾与分析","authors":"Shuyan Zhao;Chunmeng Xu;Lakshmi Ravi;Zhou Dong;Pietro Cairoli","doi":"10.1109/OJIES.2024.3420219","DOIUrl":null,"url":null,"abstract":"Voltage clamping circuits are critical components in most direct-current circuit breakers (dcCBs) to achieve ultrafast dc fault interruptions and an extended lifetime. A key performance index of voltage clamping circuits is the overvoltage ratio, which calculates the peak switching overvoltage over the nominal voltage during fault interruption processes. A lower overvoltage ratio is beneficial to minimize the dcCB insulation voltage and reduce the total breaker cost, meanwhile alleviating the overvoltage interference to the dc bus and, thus, enhancing the stability of the dc power system. This article evaluates the overvoltage ratio of various clamping circuits reported in dcCB literature. The basic working principles, switching overvoltage magnitude, advantages, and limitations of different voltage clamping circuits are evaluated by circuit simulations. A capacitor-metal–oxide varistor (C-MOV) circuit is selected for experimental validation considering its specifically low overvoltage ratio. The C-MOV prototype is verified with high-power tests at 1 kV dc bus. The measured overvoltage ratio of the C-MOV prototype matches parametric analyses. The effects of stray inductance and fault rise rate on the overvoltage ratio are also experimentally validated. Finally, the C-MOV circuit is compared with other voltage clamping circuits in the literature to demonstrate its benefits and limitations in dcCB applications.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"651-662"},"PeriodicalIF":5.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10577240","citationCount":"0","resultStr":"{\"title\":\"Review and Analysis of Voltage Clamping Circuits With Low Overvoltage Ratios for DC Circuit Breakers\",\"authors\":\"Shuyan Zhao;Chunmeng Xu;Lakshmi Ravi;Zhou Dong;Pietro Cairoli\",\"doi\":\"10.1109/OJIES.2024.3420219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage clamping circuits are critical components in most direct-current circuit breakers (dcCBs) to achieve ultrafast dc fault interruptions and an extended lifetime. A key performance index of voltage clamping circuits is the overvoltage ratio, which calculates the peak switching overvoltage over the nominal voltage during fault interruption processes. A lower overvoltage ratio is beneficial to minimize the dcCB insulation voltage and reduce the total breaker cost, meanwhile alleviating the overvoltage interference to the dc bus and, thus, enhancing the stability of the dc power system. This article evaluates the overvoltage ratio of various clamping circuits reported in dcCB literature. The basic working principles, switching overvoltage magnitude, advantages, and limitations of different voltage clamping circuits are evaluated by circuit simulations. A capacitor-metal–oxide varistor (C-MOV) circuit is selected for experimental validation considering its specifically low overvoltage ratio. The C-MOV prototype is verified with high-power tests at 1 kV dc bus. The measured overvoltage ratio of the C-MOV prototype matches parametric analyses. The effects of stray inductance and fault rise rate on the overvoltage ratio are also experimentally validated. Finally, the C-MOV circuit is compared with other voltage clamping circuits in the literature to demonstrate its benefits and limitations in dcCB applications.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"651-662\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10577240\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10577240/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10577240/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Review and Analysis of Voltage Clamping Circuits With Low Overvoltage Ratios for DC Circuit Breakers
Voltage clamping circuits are critical components in most direct-current circuit breakers (dcCBs) to achieve ultrafast dc fault interruptions and an extended lifetime. A key performance index of voltage clamping circuits is the overvoltage ratio, which calculates the peak switching overvoltage over the nominal voltage during fault interruption processes. A lower overvoltage ratio is beneficial to minimize the dcCB insulation voltage and reduce the total breaker cost, meanwhile alleviating the overvoltage interference to the dc bus and, thus, enhancing the stability of the dc power system. This article evaluates the overvoltage ratio of various clamping circuits reported in dcCB literature. The basic working principles, switching overvoltage magnitude, advantages, and limitations of different voltage clamping circuits are evaluated by circuit simulations. A capacitor-metal–oxide varistor (C-MOV) circuit is selected for experimental validation considering its specifically low overvoltage ratio. The C-MOV prototype is verified with high-power tests at 1 kV dc bus. The measured overvoltage ratio of the C-MOV prototype matches parametric analyses. The effects of stray inductance and fault rise rate on the overvoltage ratio are also experimentally validated. Finally, the C-MOV circuit is compared with other voltage clamping circuits in the literature to demonstrate its benefits and limitations in dcCB applications.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.