通过 TCAD 仿真研究 pGaN/AlGaN/GaN HEMT 的正向栅极漏电流

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Semiconductor Science and Technology Pub Date : 2024-06-17 DOI:10.1088/1361-6641/ad5041
Arghyadeep Sarkar
{"title":"通过 TCAD 仿真研究 pGaN/AlGaN/GaN HEMT 的正向栅极漏电流","authors":"Arghyadeep Sarkar","doi":"10.1088/1361-6641/ad5041","DOIUrl":null,"url":null,"abstract":"In this study, we examined the gate leakage characteristics of normally off pGaN/AlGaN/GaN HEMTs through a simulation study. The Fowler Nordheim Tunneling (FNT) mechanism mainly contributes to the gate leakage process as indicated by the Technology Computer-Aided Design (TCAD) simulation. However, at low bias, the FNT undercalculates the leakage current since the electric field is low in this region. This extra leakage current component at this low bias region can be attributed to the presence of surface traps. Trap-assisted tunneling current along with the FNT current can explain forward leakage characteristics of the pGaN HEMTs. Our TCAD simulations were matched with the experimental data for five devices from four different research groups to support this claim. Using TCAD simulations, we have been able to analyze several device parameters including the various potential drops inside the gate stack structure. We were able to identify some of the trap levels and compare them to the dominant defects expected to be present in the pGaN cap layer. Furthermore, we studied the effects of different device parameters on the gate leakage process in the pGaN HEMT.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the forward gate leakage current in pGaN/AlGaN/GaN HEMTs through TCAD simulations\",\"authors\":\"Arghyadeep Sarkar\",\"doi\":\"10.1088/1361-6641/ad5041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we examined the gate leakage characteristics of normally off pGaN/AlGaN/GaN HEMTs through a simulation study. The Fowler Nordheim Tunneling (FNT) mechanism mainly contributes to the gate leakage process as indicated by the Technology Computer-Aided Design (TCAD) simulation. However, at low bias, the FNT undercalculates the leakage current since the electric field is low in this region. This extra leakage current component at this low bias region can be attributed to the presence of surface traps. Trap-assisted tunneling current along with the FNT current can explain forward leakage characteristics of the pGaN HEMTs. Our TCAD simulations were matched with the experimental data for five devices from four different research groups to support this claim. Using TCAD simulations, we have been able to analyze several device parameters including the various potential drops inside the gate stack structure. We were able to identify some of the trap levels and compare them to the dominant defects expected to be present in the pGaN cap layer. Furthermore, we studied the effects of different device parameters on the gate leakage process in the pGaN HEMT.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad5041\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad5041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们通过模拟研究考察了常关型 pGaN/AlGaN/GaN HEMT 的栅极漏电特性。技术计算机辅助设计(TCAD)仿真表明,栅极漏电过程主要由 Fowler Nordheim 隧道(FNT)机制造成。然而,在低偏压下,由于该区域的电场较低,FNT 低估了漏电流。在低偏压区域出现的额外漏电流分量可归因于表面陷阱的存在。陷阱辅助隧道电流和 FNT 电流可以解释 pGaN HEMT 的正向漏电流特性。我们的 TCAD 仿真与来自四个不同研究小组的五个器件的实验数据相匹配,以支持这一说法。利用 TCAD 仿真,我们能够分析多个器件参数,包括栅极堆栈结构内部的各种电位降。我们能够确定一些陷阱水平,并将它们与预计存在于 pGaN 盖层中的主要缺陷进行比较。此外,我们还研究了不同器件参数对 pGaN HEMT 栅极漏电过程的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the forward gate leakage current in pGaN/AlGaN/GaN HEMTs through TCAD simulations
In this study, we examined the gate leakage characteristics of normally off pGaN/AlGaN/GaN HEMTs through a simulation study. The Fowler Nordheim Tunneling (FNT) mechanism mainly contributes to the gate leakage process as indicated by the Technology Computer-Aided Design (TCAD) simulation. However, at low bias, the FNT undercalculates the leakage current since the electric field is low in this region. This extra leakage current component at this low bias region can be attributed to the presence of surface traps. Trap-assisted tunneling current along with the FNT current can explain forward leakage characteristics of the pGaN HEMTs. Our TCAD simulations were matched with the experimental data for five devices from four different research groups to support this claim. Using TCAD simulations, we have been able to analyze several device parameters including the various potential drops inside the gate stack structure. We were able to identify some of the trap levels and compare them to the dominant defects expected to be present in the pGaN cap layer. Furthermore, we studied the effects of different device parameters on the gate leakage process in the pGaN HEMT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
期刊最新文献
Effect of atomic layer deposition process parameters on TiN electrode for Hf0.5Zr0.5O2 ferroelectric capacitor The ab initio study of n-type nitrogen and gallium co-doped diamond Self-powered Schottky barrier photodetector with high responsivity based on homoepitaxial Ga2O3 films by MOCVD Sub-bandgap excited photoluminescence probing of deep defect complexes in GaN doped by Si, Ge and C impurities The effect of temperature on the electrical characteristics of zigzag and armchair black phosphorus based 2D MOSFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1