非分层 SMEFT 分析的可细化建模

Robert Schöfbeck
{"title":"非分层 SMEFT 分析的可细化建模","authors":"Robert Schöfbeck","doi":"arxiv-2406.19076","DOIUrl":null,"url":null,"abstract":"We present techniques for estimating the effects of systematic uncertainties\nin unbinned data analyses at the LHC. Our primary focus is constraining the\nWilson coefficients in the standard model effective field theory (SMEFT), but\nthe methodology applies to broader parametric models of phenomena beyond the\nstandard model (BSM). We elevate the well-established procedures for binned\nPoisson counting experiments to the unbinned case by utilizing machine-learned\nsurrogates of the likelihood ratio. This approach can be applied to various\ntheoretical, modeling, and experimental uncertainties. By establishing a common\nstatistical framework for BSM and systematic effects, we lay the groundwork for\nfuture unbinned analyses at the LHC. Additionally, we introduce a novel\ntree-boosting algorithm capable of learning highly accurate parameterizations\nof systematic effects. This algorithm extends the existing toolkit with a\nversatile and robust alternative. We demonstrate our approach using the example\nof an SMEFT interpretation of highly energetic top quark pair production in\nproton-proton collisions.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinable modeling for unbinned SMEFT analyses\",\"authors\":\"Robert Schöfbeck\",\"doi\":\"arxiv-2406.19076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present techniques for estimating the effects of systematic uncertainties\\nin unbinned data analyses at the LHC. Our primary focus is constraining the\\nWilson coefficients in the standard model effective field theory (SMEFT), but\\nthe methodology applies to broader parametric models of phenomena beyond the\\nstandard model (BSM). We elevate the well-established procedures for binned\\nPoisson counting experiments to the unbinned case by utilizing machine-learned\\nsurrogates of the likelihood ratio. This approach can be applied to various\\ntheoretical, modeling, and experimental uncertainties. By establishing a common\\nstatistical framework for BSM and systematic effects, we lay the groundwork for\\nfuture unbinned analyses at the LHC. Additionally, we introduce a novel\\ntree-boosting algorithm capable of learning highly accurate parameterizations\\nof systematic effects. This algorithm extends the existing toolkit with a\\nversatile and robust alternative. We demonstrate our approach using the example\\nof an SMEFT interpretation of highly energetic top quark pair production in\\nproton-proton collisions.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了在大型强子对撞机非分选数据分析中估算系统不确定性影响的技术。我们的主要重点是约束标准模型有效场理论(SMEFT)中的威尔逊系数,但这一方法也适用于标准模型(BSM)之外的更广泛的现象参数模型。我们利用机器学习的似然比代用指标,将二进制泊松计数实验的成熟程序提升到非二进制情况。这种方法适用于各种理论、建模和实验不确定性。通过为 BSM 和系统效应建立一个通用统计框架,我们为未来在大型强子对撞机上进行无分度分析奠定了基础。此外,我们还引入了一种新颖的三增强算法,能够学习高精度的系统效应参数。这种算法扩展了现有的工具包,提供了一种通用而稳健的替代方法。我们以质子-质子对撞中高能顶夸克对产生的 SMEFT 解释为例,演示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Refinable modeling for unbinned SMEFT analyses
We present techniques for estimating the effects of systematic uncertainties in unbinned data analyses at the LHC. Our primary focus is constraining the Wilson coefficients in the standard model effective field theory (SMEFT), but the methodology applies to broader parametric models of phenomena beyond the standard model (BSM). We elevate the well-established procedures for binned Poisson counting experiments to the unbinned case by utilizing machine-learned surrogates of the likelihood ratio. This approach can be applied to various theoretical, modeling, and experimental uncertainties. By establishing a common statistical framework for BSM and systematic effects, we lay the groundwork for future unbinned analyses at the LHC. Additionally, we introduce a novel tree-boosting algorithm capable of learning highly accurate parameterizations of systematic effects. This algorithm extends the existing toolkit with a versatile and robust alternative. We demonstrate our approach using the example of an SMEFT interpretation of highly energetic top quark pair production in proton-proton collisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1