Roberto Ambrosini, Federica Baccini, Lucio Barabesi
{"title":"用于分析冰川生态系统的相似性网络聚合法","authors":"Roberto Ambrosini, Federica Baccini, Lucio Barabesi","doi":"10.1002/env.2875","DOIUrl":null,"url":null,"abstract":"The synthesis of information deriving from complex networks is a topic receiving increasing relevance in ecology and environmental sciences. In particular, the aggregation of multilayer networks, that is, network structures formed by multiple interacting networks (the layers), constitutes a fast‐growing field. In several environmental applications, the layers of a multilayer network are modeled as a collection of similarity matrices describing how similar pairs of biological entities are, based on different types of features (e.g., biological traits). The present paper first discusses two main techniques for combining the multi‐layered information into a single network (the so‐called monoplex), that is, similarity network fusion and similarity matrix average (SMA). Then, the effectiveness of the two methods is tested on a real‐world dataset of the relative abundance of microbial species in the ecosystems of nine glaciers (four glaciers in the Alps and five in the Andes). A preliminary clustering analysis on the monoplexes obtained with different methods shows the emergence of a tightly connected community formed by species that are typical of cryoconite holes worldwide. Moreover, the weights assigned to different layers by the SMA algorithm suggest that two large South American glaciers (Exploradores and Perito Moreno) are structurally different from the smaller glaciers in both Europe and South America. Overall, these results highlight the importance of integration methods in the discovery of the underlying organizational structure of biological entities in multilayer ecological networks.","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"14 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity network aggregation for the analysis of glacier ecosystems\",\"authors\":\"Roberto Ambrosini, Federica Baccini, Lucio Barabesi\",\"doi\":\"10.1002/env.2875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of information deriving from complex networks is a topic receiving increasing relevance in ecology and environmental sciences. In particular, the aggregation of multilayer networks, that is, network structures formed by multiple interacting networks (the layers), constitutes a fast‐growing field. In several environmental applications, the layers of a multilayer network are modeled as a collection of similarity matrices describing how similar pairs of biological entities are, based on different types of features (e.g., biological traits). The present paper first discusses two main techniques for combining the multi‐layered information into a single network (the so‐called monoplex), that is, similarity network fusion and similarity matrix average (SMA). Then, the effectiveness of the two methods is tested on a real‐world dataset of the relative abundance of microbial species in the ecosystems of nine glaciers (four glaciers in the Alps and five in the Andes). A preliminary clustering analysis on the monoplexes obtained with different methods shows the emergence of a tightly connected community formed by species that are typical of cryoconite holes worldwide. Moreover, the weights assigned to different layers by the SMA algorithm suggest that two large South American glaciers (Exploradores and Perito Moreno) are structurally different from the smaller glaciers in both Europe and South America. Overall, these results highlight the importance of integration methods in the discovery of the underlying organizational structure of biological entities in multilayer ecological networks.\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/env.2875\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/env.2875","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Similarity network aggregation for the analysis of glacier ecosystems
The synthesis of information deriving from complex networks is a topic receiving increasing relevance in ecology and environmental sciences. In particular, the aggregation of multilayer networks, that is, network structures formed by multiple interacting networks (the layers), constitutes a fast‐growing field. In several environmental applications, the layers of a multilayer network are modeled as a collection of similarity matrices describing how similar pairs of biological entities are, based on different types of features (e.g., biological traits). The present paper first discusses two main techniques for combining the multi‐layered information into a single network (the so‐called monoplex), that is, similarity network fusion and similarity matrix average (SMA). Then, the effectiveness of the two methods is tested on a real‐world dataset of the relative abundance of microbial species in the ecosystems of nine glaciers (four glaciers in the Alps and five in the Andes). A preliminary clustering analysis on the monoplexes obtained with different methods shows the emergence of a tightly connected community formed by species that are typical of cryoconite holes worldwide. Moreover, the weights assigned to different layers by the SMA algorithm suggest that two large South American glaciers (Exploradores and Perito Moreno) are structurally different from the smaller glaciers in both Europe and South America. Overall, these results highlight the importance of integration methods in the discovery of the underlying organizational structure of biological entities in multilayer ecological networks.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.