完全 3D 打印的微型电化学平台,配有即插即用的石墨化电极:多巴胺传感的全面验证

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY IEEE Open Journal of Nanotechnology Pub Date : 2024-06-25 DOI:10.1109/OJNANO.2024.3418840
K S Jaya Lakshmi;Ramya K;Khairunnisa Amreen;Sanket Goel
{"title":"完全 3D 打印的微型电化学平台,配有即插即用的石墨化电极:多巴胺传感的全面验证","authors":"K S Jaya Lakshmi;Ramya K;Khairunnisa Amreen;Sanket Goel","doi":"10.1109/OJNANO.2024.3418840","DOIUrl":null,"url":null,"abstract":"Globally, a contemporary trend is towards the realization of sustainable, eco-friendly, miniaturized, and cost-effective sensors. This work focuses on developing a plug-and-play device using inexpensive and biodegradable UV resin fed 3D printing stereolithography (SLA) to produce miniaturized microfluidic platforms for electrochemical sensing. The device consists of three compartments designed to accommodate the 3-electrodes according to the need. SLA 3D printing technique solves these restrictions, making sensors reliable, repeatable, and durable. For electrochemical detection at the point of need or as a lab-on-chip (LoC) platform with minimal sample volume, this work attempts to construct a flexible as well as non-flexible microelectrode setup. The analytical capability of the platform is examined by quantifying nanomolar levels of dopamine in human body fluids. Chronoamperometry and cyclic voltammetry on surface-treated graphene-poly lactic acid (g-PLA) microelectrodes modified with gold nanoparticles are carried out utilizing a handheld potentiostat. The designed device has a linear range of 0.1 to 120 nM with limit of detection and limit of quantification of 0.083 and 0.27 nM, respectively. Various electrode characterizations, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy are carried out. The developed device is finally tested for real-time analysis on human blood and serum samples.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571366","citationCount":"0","resultStr":"{\"title\":\"Fully 3D Printed Miniaturized Electrochemical Platform With Plug-and-Play Graphitized Electrodes: Exhaustively Validated for Dopamine Sensing\",\"authors\":\"K S Jaya Lakshmi;Ramya K;Khairunnisa Amreen;Sanket Goel\",\"doi\":\"10.1109/OJNANO.2024.3418840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, a contemporary trend is towards the realization of sustainable, eco-friendly, miniaturized, and cost-effective sensors. This work focuses on developing a plug-and-play device using inexpensive and biodegradable UV resin fed 3D printing stereolithography (SLA) to produce miniaturized microfluidic platforms for electrochemical sensing. The device consists of three compartments designed to accommodate the 3-electrodes according to the need. SLA 3D printing technique solves these restrictions, making sensors reliable, repeatable, and durable. For electrochemical detection at the point of need or as a lab-on-chip (LoC) platform with minimal sample volume, this work attempts to construct a flexible as well as non-flexible microelectrode setup. The analytical capability of the platform is examined by quantifying nanomolar levels of dopamine in human body fluids. Chronoamperometry and cyclic voltammetry on surface-treated graphene-poly lactic acid (g-PLA) microelectrodes modified with gold nanoparticles are carried out utilizing a handheld potentiostat. The designed device has a linear range of 0.1 to 120 nM with limit of detection and limit of quantification of 0.083 and 0.27 nM, respectively. Various electrode characterizations, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy are carried out. The developed device is finally tested for real-time analysis on human blood and serum samples.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571366\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10571366/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10571366/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在全球范围内,实现传感器的可持续、生态友好、微型化和成本效益是当今的发展趋势。这项工作的重点是开发一种即插即用的装置,利用廉价且可生物降解的 UV 树脂喂入 3D 打印立体光刻(SLA)技术,生产用于电化学传感的微型化微流控平台。该装置由三个隔间组成,可根据需要容纳 3 个电极。SLA 三维打印技术解决了这些限制,使传感器可靠、可重复、耐用。为了在需要时进行电化学检测,或将其作为具有最小样品体积的片上实验室(LoC)平台,这项工作尝试构建一个灵活和非灵活的微电极装置。通过量化人体液中纳摩尔水平的多巴胺,检验了该平台的分析能力。利用手持式恒电位仪对经表面处理的、用金纳米粒子修饰的石墨烯-聚乳酸(g-PLA)微电极进行了时程测量和循环伏安法测定。所设计的装置线性范围为 0.1 至 120 nM,检出限和定量限分别为 0.083 nM 和 0.27 nM。还进行了各种电极表征,包括扫描电子显微镜、能量色散 X 射线光谱和电化学阻抗光谱。最后对所开发的装置进行了测试,以便对人体血液和血清样本进行实时分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully 3D Printed Miniaturized Electrochemical Platform With Plug-and-Play Graphitized Electrodes: Exhaustively Validated for Dopamine Sensing
Globally, a contemporary trend is towards the realization of sustainable, eco-friendly, miniaturized, and cost-effective sensors. This work focuses on developing a plug-and-play device using inexpensive and biodegradable UV resin fed 3D printing stereolithography (SLA) to produce miniaturized microfluidic platforms for electrochemical sensing. The device consists of three compartments designed to accommodate the 3-electrodes according to the need. SLA 3D printing technique solves these restrictions, making sensors reliable, repeatable, and durable. For electrochemical detection at the point of need or as a lab-on-chip (LoC) platform with minimal sample volume, this work attempts to construct a flexible as well as non-flexible microelectrode setup. The analytical capability of the platform is examined by quantifying nanomolar levels of dopamine in human body fluids. Chronoamperometry and cyclic voltammetry on surface-treated graphene-poly lactic acid (g-PLA) microelectrodes modified with gold nanoparticles are carried out utilizing a handheld potentiostat. The designed device has a linear range of 0.1 to 120 nM with limit of detection and limit of quantification of 0.083 and 0.27 nM, respectively. Various electrode characterizations, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy are carried out. The developed device is finally tested for real-time analysis on human blood and serum samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
期刊最新文献
First-Principles Simulation of the Interaction Between DNA Nucleotides and One-Dimensional Carbon Chain in Electrical Based Sequencing Enhanced Optical and Infrared Activity of Nanosphere Dimers Attributed to Dimer Geometry Fully 3D Printed Miniaturized Electrochemical Platform With Plug-and-Play Graphitized Electrodes: Exhaustively Validated for Dopamine Sensing Pseudo-Random Number Generators for Stochastic Computing (SC): Design and Analysis Design and Performance Analysis of ISFET Using Various Oxide Materials for Biosensing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1