MD 模拟和 NMR 在理解无定形药物形态方面的重要协同作用

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-06-20 DOI:10.1039/d4fd00097h
Jamie Liam Guest, Esther A. E. Bourne, Martin A. Screen, Mark Richard Wilson, Tran N. Pham, Paul Hodgkinson
{"title":"MD 模拟和 NMR 在理解无定形药物形态方面的重要协同作用","authors":"Jamie Liam Guest, Esther A. E. Bourne, Martin A. Screen, Mark Richard Wilson, Tran N. Pham, Paul Hodgkinson","doi":"10.1039/d4fd00097h","DOIUrl":null,"url":null,"abstract":"Molecular dynamics (MD) simulations and chemical shifts from machine learning are used to predict <small><sup>15</sup></small>N, <small><sup>13</sup></small>C and <small><sup>1</sup></small>H chemical shifts for the amorphous form of the drug irbesartan. The molecules are observed to be highly dynamic well below the glass transition, and averaging over this dynamics is essential to understanding the observed NMR shifts. Predicted linewidths are consistently about 2 ppm narrower than observed experimentally, which is hypothesised to result from susceptibility effects. Previously observed differences in the <small><sup>13</sup></small>C shifts associated with the two tetrazole tautomers can be rationalised in terms of differing conformational dynamics associated with the presence of intramolecular interaction in one tautomer. <small><sup>1</sup></small>H shifts associated with hydrogen bonding can also be rationalised in terms of differing average frequencies of transient hydrogen bonding interactions.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"26 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The essential synergy of MD simulation and NMR in understanding amorphous drug forms\",\"authors\":\"Jamie Liam Guest, Esther A. E. Bourne, Martin A. Screen, Mark Richard Wilson, Tran N. Pham, Paul Hodgkinson\",\"doi\":\"10.1039/d4fd00097h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular dynamics (MD) simulations and chemical shifts from machine learning are used to predict <small><sup>15</sup></small>N, <small><sup>13</sup></small>C and <small><sup>1</sup></small>H chemical shifts for the amorphous form of the drug irbesartan. The molecules are observed to be highly dynamic well below the glass transition, and averaging over this dynamics is essential to understanding the observed NMR shifts. Predicted linewidths are consistently about 2 ppm narrower than observed experimentally, which is hypothesised to result from susceptibility effects. Previously observed differences in the <small><sup>13</sup></small>C shifts associated with the two tetrazole tautomers can be rationalised in terms of differing conformational dynamics associated with the presence of intramolecular interaction in one tautomer. <small><sup>1</sup></small>H shifts associated with hydrogen bonding can also be rationalised in terms of differing average frequencies of transient hydrogen bonding interactions.\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4fd00097h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00097h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用分子动力学(MD)模拟和机器学习的化学位移预测药物厄贝沙坦无定形形式的 15N、13C 和 1H 化学位移。观察到分子在玻璃化转变以下具有很高的动态性,对这种动态进行平均对于理解观察到的 NMR 移位至关重要。预测的线宽始终比实验观察到的线宽窄约 2 ppm,假设这是电感效应造成的。之前观察到的与两种四氮唑同系物有关的 13C 移位差异,可以从与一种同系物中存在分子内相互作用有关的不同构象动力学角度来解释。与氢键有关的 1H 移动也可以从瞬时氢键相互作用的平均频率不同的角度来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The essential synergy of MD simulation and NMR in understanding amorphous drug forms
Molecular dynamics (MD) simulations and chemical shifts from machine learning are used to predict 15N, 13C and 1H chemical shifts for the amorphous form of the drug irbesartan. The molecules are observed to be highly dynamic well below the glass transition, and averaging over this dynamics is essential to understanding the observed NMR shifts. Predicted linewidths are consistently about 2 ppm narrower than observed experimentally, which is hypothesised to result from susceptibility effects. Previously observed differences in the 13C shifts associated with the two tetrazole tautomers can be rationalised in terms of differing conformational dynamics associated with the presence of intramolecular interaction in one tautomer. 1H shifts associated with hydrogen bonding can also be rationalised in terms of differing average frequencies of transient hydrogen bonding interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Discovering synthesis targets: general discussion. Discovering trends in big data: general discussion. Discovering structure-property correlations: general discussion. Discovering chemical structure: general discussion. Understanding dynamics and mechanisms: general discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1