{"title":"用于宽温钠储存的钠钛铁矿层间局部结构的拓扑质子调控","authors":"Ru-Ning Tian, Siwei Zhao, Zhuoran Lv, Guozhong Lu, Mengnuo Fu, Jingjing Chen, Dajian Wang, Chenlong Dong, Zhiyong Mao","doi":"10.1002/cey2.560","DOIUrl":null,"url":null,"abstract":"<p>Developing high-capacity and high-rate anodes is significant to engineering sodium-ion batteries with high energy density and high power density. Layered Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> (NTO), with an open crystal structure, large theoretical capacity, and low working potential, is recognized as one of the prospective anodes for sodium storage. Nevertheless, it suffers from sluggish sodiation kinetics and low (micro)structure stability triggered by a high Na<sup>+</sup> diffusion barrier and weak adhesion of [Ti<sub>3</sub>O<sub>7</sub>] slabs. Herein, the interlayered local structure of NTO is regulated to solve the above issues, in which parts of interlayered Na<sup>+</sup> sites are substituted by H<sup>+</sup> (Na<sub>2−<i>x</i></sub>H<sub><i>x</i></sub>Ti<sub>3</sub>O<sub>7</sub> [NHTO]). Theoretical calculations prove that the NHTO offers lower activation energy for Na<sup>+</sup> transports and low interlayer spacings with alleviated Na–Na repulsion and relatively flexible [Ti<sub>3</sub>O<sub>7</sub>] slabs to reduce fractural stress. In situ and ex situ characterizations of (micro)structure evolution reveal that NHTO goes through transformation between H-rich and Na-rich phases, resulting in high structure stability and microstructure integrity. The optimal NHTO anode delivers a high capacity of 190.6 mA h g<sup>−1</sup> at 0.5 C after 300 cycles and a superior high-rate stability of 90.6 mA h g<sup>−1</sup> at 50 C over 10,000 cycles at room temperature. Besides, it offers a capacity of 50.3 mA h g<sup>−1</sup> after 1800 cycles at a low temperature of −20°C and 195.7 mA h g<sup>−1</sup> after 500 cycles at a high temperature of 40°C at 0.5 C. The developed topologically interlayered local structure regulation strategy would raise the prospect of designing high-performance layered anodes.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.560","citationCount":"0","resultStr":"{\"title\":\"Topological proton regulation of interlayered local structure in sodium titanite for wide-temperature sodium storage\",\"authors\":\"Ru-Ning Tian, Siwei Zhao, Zhuoran Lv, Guozhong Lu, Mengnuo Fu, Jingjing Chen, Dajian Wang, Chenlong Dong, Zhiyong Mao\",\"doi\":\"10.1002/cey2.560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing high-capacity and high-rate anodes is significant to engineering sodium-ion batteries with high energy density and high power density. Layered Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> (NTO), with an open crystal structure, large theoretical capacity, and low working potential, is recognized as one of the prospective anodes for sodium storage. Nevertheless, it suffers from sluggish sodiation kinetics and low (micro)structure stability triggered by a high Na<sup>+</sup> diffusion barrier and weak adhesion of [Ti<sub>3</sub>O<sub>7</sub>] slabs. Herein, the interlayered local structure of NTO is regulated to solve the above issues, in which parts of interlayered Na<sup>+</sup> sites are substituted by H<sup>+</sup> (Na<sub>2−<i>x</i></sub>H<sub><i>x</i></sub>Ti<sub>3</sub>O<sub>7</sub> [NHTO]). Theoretical calculations prove that the NHTO offers lower activation energy for Na<sup>+</sup> transports and low interlayer spacings with alleviated Na–Na repulsion and relatively flexible [Ti<sub>3</sub>O<sub>7</sub>] slabs to reduce fractural stress. In situ and ex situ characterizations of (micro)structure evolution reveal that NHTO goes through transformation between H-rich and Na-rich phases, resulting in high structure stability and microstructure integrity. The optimal NHTO anode delivers a high capacity of 190.6 mA h g<sup>−1</sup> at 0.5 C after 300 cycles and a superior high-rate stability of 90.6 mA h g<sup>−1</sup> at 50 C over 10,000 cycles at room temperature. Besides, it offers a capacity of 50.3 mA h g<sup>−1</sup> after 1800 cycles at a low temperature of −20°C and 195.7 mA h g<sup>−1</sup> after 500 cycles at a high temperature of 40°C at 0.5 C. The developed topologically interlayered local structure regulation strategy would raise the prospect of designing high-performance layered anodes.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.560\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.560\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.560","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
开发高容量和高倍率阳极对于制造高能量密度和高功率密度的钠离子电池意义重大。层状 Na2Ti3O7(NTO)具有开放晶体结构、理论容量大、工作电位低等特点,是公认的钠离子储能阳极之一。然而,由于 Na+ 扩散阻力大、[Ti3O7] 板的附着力弱,NTO 存在钠化动力学缓慢、(微)结构稳定性低等问题。为解决上述问题,本文对 NTO 的层间局部结构进行了调节,其中部分层间 Na+ 位点被 H+ 取代(Na2-xHxTi3O7 [NHTO])。理论计算证明,NHTO 具有较低的 Na+ 迁移活化能和较低的层间间隔,可减轻 Na-Na 排斥和相对柔性的 [Ti3O7] 板,从而降低断裂应力。对(微)结构演化的原位和非原位表征显示,NHTO 经历了富 H 相和富 Na 相之间的转变,因而具有较高的结构稳定性和微结构完整性。最佳的 NHTO 阳极经过 300 次循环后,在 0.5 摄氏度时可达到 190.6 mA h g-1 的高容量,在室温下经过 10,000 次循环后,在 50 摄氏度时可达到 90.6 mA h g-1 的高倍率稳定性。此外,在-20°C的低温条件下循环 1800 次后,它的容量为 50.3 mA h g-1;在 0.5°C 的高温条件下循环 500 次后,它的容量为 195.7 mA h g-1。所开发的拓扑层间局部结构调节策略将为设计高性能层状阳极带来更广阔的前景。
Topological proton regulation of interlayered local structure in sodium titanite for wide-temperature sodium storage
Developing high-capacity and high-rate anodes is significant to engineering sodium-ion batteries with high energy density and high power density. Layered Na2Ti3O7 (NTO), with an open crystal structure, large theoretical capacity, and low working potential, is recognized as one of the prospective anodes for sodium storage. Nevertheless, it suffers from sluggish sodiation kinetics and low (micro)structure stability triggered by a high Na+ diffusion barrier and weak adhesion of [Ti3O7] slabs. Herein, the interlayered local structure of NTO is regulated to solve the above issues, in which parts of interlayered Na+ sites are substituted by H+ (Na2−xHxTi3O7 [NHTO]). Theoretical calculations prove that the NHTO offers lower activation energy for Na+ transports and low interlayer spacings with alleviated Na–Na repulsion and relatively flexible [Ti3O7] slabs to reduce fractural stress. In situ and ex situ characterizations of (micro)structure evolution reveal that NHTO goes through transformation between H-rich and Na-rich phases, resulting in high structure stability and microstructure integrity. The optimal NHTO anode delivers a high capacity of 190.6 mA h g−1 at 0.5 C after 300 cycles and a superior high-rate stability of 90.6 mA h g−1 at 50 C over 10,000 cycles at room temperature. Besides, it offers a capacity of 50.3 mA h g−1 after 1800 cycles at a low temperature of −20°C and 195.7 mA h g−1 after 500 cycles at a high temperature of 40°C at 0.5 C. The developed topologically interlayered local structure regulation strategy would raise the prospect of designing high-performance layered anodes.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.