Li Kang, Yingkui Dong, Wanxue Wang, Zehua Li, Yizhuo Wang, Li Yan, Cunlong Yin, XiaoHui Zhang, Han Dai, Bo Wu, Hongxin Zhao, Junfeng Wang
{"title":"通过噬菌体展示鉴定新型抗 ROR1 纳米抗体及其生化特征","authors":"Li Kang, Yingkui Dong, Wanxue Wang, Zehua Li, Yizhuo Wang, Li Yan, Cunlong Yin, XiaoHui Zhang, Han Dai, Bo Wu, Hongxin Zhao, Junfeng Wang","doi":"10.1002/bab.2623","DOIUrl":null,"url":null,"abstract":"In this study, we aimed to develop nanobodies targeting receptor tyrosine kinase‐like orphan receptor 1 (ROR1) for cancer diagnosis and therapy. We immunized alpacas with ROR1, extracted RNA from their blood, and converted it to complementary DNA (cDNA) to amplify the VHH (variable domain of heavy‐chain antibodies) sequence. This sequence was used to construct a phage library with a capacity of 8 ×10<jats:sup>8</jats:sup>. Screening identified a high‐affinity nanobody, HCAbs1, which binds effectively to ROR1. ELISA and surface plasmon resonance analyses revealed HCAbs1's binding affinities to ROR1 at 4.42 and 12.9 nM, respectively. Functional tests showed HCAbs1 could reduce extracellular signal‐regulated kinase (ERK) phosphorylation levels induced by Wnt5a in ROR1‐transfected cells. Our findings highlight the potential of HCAbs1 nanobodies in diagnosing and treating cancers through targeting ROR1.","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":"86 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of a novel anti‐ROR1 nanobody through phage display and its biochemical characterization\",\"authors\":\"Li Kang, Yingkui Dong, Wanxue Wang, Zehua Li, Yizhuo Wang, Li Yan, Cunlong Yin, XiaoHui Zhang, Han Dai, Bo Wu, Hongxin Zhao, Junfeng Wang\",\"doi\":\"10.1002/bab.2623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we aimed to develop nanobodies targeting receptor tyrosine kinase‐like orphan receptor 1 (ROR1) for cancer diagnosis and therapy. We immunized alpacas with ROR1, extracted RNA from their blood, and converted it to complementary DNA (cDNA) to amplify the VHH (variable domain of heavy‐chain antibodies) sequence. This sequence was used to construct a phage library with a capacity of 8 ×10<jats:sup>8</jats:sup>. Screening identified a high‐affinity nanobody, HCAbs1, which binds effectively to ROR1. ELISA and surface plasmon resonance analyses revealed HCAbs1's binding affinities to ROR1 at 4.42 and 12.9 nM, respectively. Functional tests showed HCAbs1 could reduce extracellular signal‐regulated kinase (ERK) phosphorylation levels induced by Wnt5a in ROR1‐transfected cells. Our findings highlight the potential of HCAbs1 nanobodies in diagnosing and treating cancers through targeting ROR1.\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2623\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2623","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of a novel anti‐ROR1 nanobody through phage display and its biochemical characterization
In this study, we aimed to develop nanobodies targeting receptor tyrosine kinase‐like orphan receptor 1 (ROR1) for cancer diagnosis and therapy. We immunized alpacas with ROR1, extracted RNA from their blood, and converted it to complementary DNA (cDNA) to amplify the VHH (variable domain of heavy‐chain antibodies) sequence. This sequence was used to construct a phage library with a capacity of 8 ×108. Screening identified a high‐affinity nanobody, HCAbs1, which binds effectively to ROR1. ELISA and surface plasmon resonance analyses revealed HCAbs1's binding affinities to ROR1 at 4.42 and 12.9 nM, respectively. Functional tests showed HCAbs1 could reduce extracellular signal‐regulated kinase (ERK) phosphorylation levels induced by Wnt5a in ROR1‐transfected cells. Our findings highlight the potential of HCAbs1 nanobodies in diagnosing and treating cancers through targeting ROR1.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.