Deciphering the prognostic landscape of triple-negative breast cancer: A focus on immune-related hub genes and therapeutic implications.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biotechnology and applied biochemistry Pub Date : 2024-11-25 DOI:10.1002/bab.2700
HemaNandini Rajendran Krishnamoorthy, Ramanathan Karuppasamy
{"title":"Deciphering the prognostic landscape of triple-negative breast cancer: A focus on immune-related hub genes and therapeutic implications.","authors":"HemaNandini Rajendran Krishnamoorthy, Ramanathan Karuppasamy","doi":"10.1002/bab.2700","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC), known for its hostile nature and limited treatment modalities, has spurred researchers to explore novel approaches for enhancing clinical outcomes. Here, the study aimed to analyze transcriptomics data to identify immune-related hub genes associated with TNBC that might serve as prognostic biomarkers. Initially, we determined genes that were differentially expressed between TNBC and normal tissues by integrating microarray and RNA sequencing data. Then, through protein-protein interaction and module analysis, we identified five putative hub genes: AURKA, CCNB1, CDCA8, GAPDH, and TOP2A. Subsequently, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the hub genes were primarily involved in the progesterone-mediated oocyte maturation signaling pathway and oocyte meiosis. Additionally, we observed that these five hub genes were significantly elevated at both protein and mRNA levels in TNBC tissues and contributed to worse survival. Furthermore, the expression of these hub genes exhibited a strong positive association with immune-invading cells such as CD8 T cells, CD4 T cells, and dendritic cells. The analysis of the regulatory network revealed three transcription factors (YBX-1, E2F1, and E2F3) and three posttranscriptional regulators (hsa-mir-25-3p, hsa-mir-92a-3p, and hsa-let-7b-5p) of hub genes. Finally, we explored potential drug candidates for the hub genes using Drug-Gene Interaction Database and discovered that there are no FDA-approved drugs for CCNB1 and CDCA8, highlighting a promising area for future research. Taken together, our results will be of immense importance in addressing the intricacies of TNBC.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2700","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC), known for its hostile nature and limited treatment modalities, has spurred researchers to explore novel approaches for enhancing clinical outcomes. Here, the study aimed to analyze transcriptomics data to identify immune-related hub genes associated with TNBC that might serve as prognostic biomarkers. Initially, we determined genes that were differentially expressed between TNBC and normal tissues by integrating microarray and RNA sequencing data. Then, through protein-protein interaction and module analysis, we identified five putative hub genes: AURKA, CCNB1, CDCA8, GAPDH, and TOP2A. Subsequently, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the hub genes were primarily involved in the progesterone-mediated oocyte maturation signaling pathway and oocyte meiosis. Additionally, we observed that these five hub genes were significantly elevated at both protein and mRNA levels in TNBC tissues and contributed to worse survival. Furthermore, the expression of these hub genes exhibited a strong positive association with immune-invading cells such as CD8 T cells, CD4 T cells, and dendritic cells. The analysis of the regulatory network revealed three transcription factors (YBX-1, E2F1, and E2F3) and three posttranscriptional regulators (hsa-mir-25-3p, hsa-mir-92a-3p, and hsa-let-7b-5p) of hub genes. Finally, we explored potential drug candidates for the hub genes using Drug-Gene Interaction Database and discovered that there are no FDA-approved drugs for CCNB1 and CDCA8, highlighting a promising area for future research. Taken together, our results will be of immense importance in addressing the intricacies of TNBC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解读三阴性乳腺癌的预后情况:聚焦免疫相关枢纽基因及治疗意义。
三阴性乳腺癌(TNBC)以其恶劣的性质和有限的治疗方法而闻名,这促使研究人员探索提高临床疗效的新方法。本研究旨在分析转录组学数据,以确定与TNBC相关的、可作为预后生物标志物的免疫相关枢纽基因。首先,我们通过整合芯片和 RNA 测序数据确定了 TNBC 和正常组织之间差异表达的基因。然后,通过蛋白-蛋白相互作用和模块分析,我们确定了五个潜在的中心基因:AURKA、CCNB1、CDCA8、GAPDH 和 TOP2A。随后,基因本体论和京都基因组百科全书的通路分析表明,这些中心基因主要参与孕酮介导的卵母细胞成熟信号通路和卵母细胞减数分裂。此外,我们还观察到,这五个中心基因在 TNBC 组织中的蛋白和 mRNA 水平均显著升高,并导致存活率降低。此外,这些中枢基因的表达与免疫侵袭细胞(如 CD8 T 细胞、CD4 T 细胞和树突状细胞)有很强的正相关性。对调控网络的分析发现了枢纽基因的三个转录因子(YBX-1、E2F1 和 E2F3)和三个转录后调控因子(hsa-mir-25-3p、hsa-mir-92a-3p 和 hsa-let-7b-5p)。最后,我们利用药物基因相互作用数据库(Drug-Gene Interaction Database)探索了枢纽基因的潜在候选药物,发现目前还没有针对 CCNB1 和 CDCA8 的药物获得美国食品及药物管理局(FDA)批准,这为今后的研究提供了一个前景广阔的领域。综上所述,我们的研究结果将对解决 TNBC 的复杂问题具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
期刊最新文献
Deciphering the prognostic landscape of triple-negative breast cancer: A focus on immune-related hub genes and therapeutic implications. Concanavalin A-activated magnetic nanoparticles as an affine material for urinary exosome isolation. The Annexin A1 Protein Mimetic Peptide Ac2-26 prevents cellular senescence of CHON-001 chondrocytes against tumor necrosis factor-α via the Nrf2/NF-κB pathway. Spatio-temporal localization of P21-activated kinase in endometrial cancer. Ameliorative effect of rutecarpine supplementation against cisplatin-induced nephrotoxicity in rats via inhibition of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1