{"title":"m6A去甲基化酶FTO对hsa_circ_0112136的调控可通过调控PI3K/AKT/mTOR通路增强胃癌的恶性程度","authors":"Jia Liu, Xiangming Fang","doi":"10.1002/bab.2631","DOIUrl":null,"url":null,"abstract":"<jats:label/>A growing body of research highlights the role that N6‐methyladenosine (m<jats:sup>6</jats:sup>A) modification and circular RNAs (circRNAs) play in gastric cancer (GC) cases. However, studies elucidating the function and mechanism of the recently discovered circRNA hsa_circ_0112136 in GC are limited. This study aimed to examine the pathophysiology of GC progression due to fat mass and obesity‐associated protein (FTO)‐mediated N6‐methyladenosine (m<jats:sup>6</jats:sup>A) modification of hsa_circ_0112136. The hsa_circ_0112136 and FTO levels in the GC samples were analyzed using qRT‐PCR. The Transwell invasion assay, wound healing assay, and CCK8 assays were employed to assess alterations in GC cell invasiveness, migration, and viability due to the aberrant regulation of hsa_circ_0112136 and FTO. Phosphorylated PI3K, AKT, and mTOR (the key proteins of the PI3K/AKT/mTOR pathway) were detected via western blotting after hsa_circ_0112136 suppression. A tumor transplantation mouse model was constructed to evaluate the suppression of hsa_circ_0112136's function in vivo. The correlation among hsa_circ_0112136 and FTO was identified using the MeRIP assay.<jats:label/>Levels of hsa_circ_0112136 and FTO were evidently elevated in GC samples. Suppression of has_circ_0112136 reduced the viability, migration, and invasive ability of GC cells in vitro, as well as delayed tumor growth in vivo via suppression of the activation of the PI3K/AKT/mTOR pathway. FTO decreased hsa_circ_0112136 m<jats:sup>6</jats:sup>A levels and enhanced hsa_circ_0112136 expression. Furthermore, FTO upregulation enhanced GC cell invasion, migration, and survival, which was reversed by hsa_circ_0112136 suppression.<jats:label/>Our study proposes that hsa_circ_0112136 functions as a tumor promoter, facilitating the malignant progression of GC through m<jats:sup>6</jats:sup>A modification (suppressed by FTO) and activating the PI3K/AKT/mTOR pathway. This suggests that targeting FTO‐m<jats:sup>6</jats:sup>A‐hsa_circ_0112136‐PI3K/AKT/mTOR may be a novel approach for GC intervention.","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":"97 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of hsa_circ_0112136 by m6A demethylase FTO can enhance the malignancy of gastric cancer via the regulation of the PI3K/AKT/mTOR pathway\",\"authors\":\"Jia Liu, Xiangming Fang\",\"doi\":\"10.1002/bab.2631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>A growing body of research highlights the role that N6‐methyladenosine (m<jats:sup>6</jats:sup>A) modification and circular RNAs (circRNAs) play in gastric cancer (GC) cases. However, studies elucidating the function and mechanism of the recently discovered circRNA hsa_circ_0112136 in GC are limited. This study aimed to examine the pathophysiology of GC progression due to fat mass and obesity‐associated protein (FTO)‐mediated N6‐methyladenosine (m<jats:sup>6</jats:sup>A) modification of hsa_circ_0112136. The hsa_circ_0112136 and FTO levels in the GC samples were analyzed using qRT‐PCR. The Transwell invasion assay, wound healing assay, and CCK8 assays were employed to assess alterations in GC cell invasiveness, migration, and viability due to the aberrant regulation of hsa_circ_0112136 and FTO. Phosphorylated PI3K, AKT, and mTOR (the key proteins of the PI3K/AKT/mTOR pathway) were detected via western blotting after hsa_circ_0112136 suppression. A tumor transplantation mouse model was constructed to evaluate the suppression of hsa_circ_0112136's function in vivo. The correlation among hsa_circ_0112136 and FTO was identified using the MeRIP assay.<jats:label/>Levels of hsa_circ_0112136 and FTO were evidently elevated in GC samples. Suppression of has_circ_0112136 reduced the viability, migration, and invasive ability of GC cells in vitro, as well as delayed tumor growth in vivo via suppression of the activation of the PI3K/AKT/mTOR pathway. FTO decreased hsa_circ_0112136 m<jats:sup>6</jats:sup>A levels and enhanced hsa_circ_0112136 expression. Furthermore, FTO upregulation enhanced GC cell invasion, migration, and survival, which was reversed by hsa_circ_0112136 suppression.<jats:label/>Our study proposes that hsa_circ_0112136 functions as a tumor promoter, facilitating the malignant progression of GC through m<jats:sup>6</jats:sup>A modification (suppressed by FTO) and activating the PI3K/AKT/mTOR pathway. This suggests that targeting FTO‐m<jats:sup>6</jats:sup>A‐hsa_circ_0112136‐PI3K/AKT/mTOR may be a novel approach for GC intervention.\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2631\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2631","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Regulation of hsa_circ_0112136 by m6A demethylase FTO can enhance the malignancy of gastric cancer via the regulation of the PI3K/AKT/mTOR pathway
A growing body of research highlights the role that N6‐methyladenosine (m6A) modification and circular RNAs (circRNAs) play in gastric cancer (GC) cases. However, studies elucidating the function and mechanism of the recently discovered circRNA hsa_circ_0112136 in GC are limited. This study aimed to examine the pathophysiology of GC progression due to fat mass and obesity‐associated protein (FTO)‐mediated N6‐methyladenosine (m6A) modification of hsa_circ_0112136. The hsa_circ_0112136 and FTO levels in the GC samples were analyzed using qRT‐PCR. The Transwell invasion assay, wound healing assay, and CCK8 assays were employed to assess alterations in GC cell invasiveness, migration, and viability due to the aberrant regulation of hsa_circ_0112136 and FTO. Phosphorylated PI3K, AKT, and mTOR (the key proteins of the PI3K/AKT/mTOR pathway) were detected via western blotting after hsa_circ_0112136 suppression. A tumor transplantation mouse model was constructed to evaluate the suppression of hsa_circ_0112136's function in vivo. The correlation among hsa_circ_0112136 and FTO was identified using the MeRIP assay.Levels of hsa_circ_0112136 and FTO were evidently elevated in GC samples. Suppression of has_circ_0112136 reduced the viability, migration, and invasive ability of GC cells in vitro, as well as delayed tumor growth in vivo via suppression of the activation of the PI3K/AKT/mTOR pathway. FTO decreased hsa_circ_0112136 m6A levels and enhanced hsa_circ_0112136 expression. Furthermore, FTO upregulation enhanced GC cell invasion, migration, and survival, which was reversed by hsa_circ_0112136 suppression.Our study proposes that hsa_circ_0112136 functions as a tumor promoter, facilitating the malignant progression of GC through m6A modification (suppressed by FTO) and activating the PI3K/AKT/mTOR pathway. This suggests that targeting FTO‐m6A‐hsa_circ_0112136‐PI3K/AKT/mTOR may be a novel approach for GC intervention.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.