$\varepsilon$-LAP:针对内容分发网络的轻量级自适应缓存分区方案与审慎的大小调整决策

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-06-28 DOI:10.1109/TCC.2024.3420454
Peng Wang;Yu Liu;Ziqi Liu;Zhelong Zhao;Ke Liu;Ke Zhou;Zhihai Huang
{"title":"$\\varepsilon$-LAP:针对内容分发网络的轻量级自适应缓存分区方案与审慎的大小调整决策","authors":"Peng Wang;Yu Liu;Ziqi Liu;Zhelong Zhao;Ke Liu;Ke Zhou;Zhihai Huang","doi":"10.1109/TCC.2024.3420454","DOIUrl":null,"url":null,"abstract":"As dependence on Content Delivery Networks (CDNs) increases, there is a growing need for innovative solutions to optimize cache performance amid increasing traffic and complicated cache-sharing workloads. Allocating exclusive resources to applications in CDNs boosts the overall cache hit ratio (OHR), enhancing efficiency. However, the traditional method of creating the miss ratio curve (MRC) is unsuitable for CDNs due to the diverse sizes of items and the vast number of applications, leading to high computational overhead and performance inconsistency. To tackle this issue, we propose a \n<u>l</u>\nightweight and \n<u>a</u>\ndaptive cache \n<u>p</u>\nartitioning scheme called \n<inline-formula><tex-math>$\\varepsilon$</tex-math></inline-formula>\n-LAP. This scheme uses a corresponding shadow cache for each partition and sorts them based on the average hit numbers on the granularity unit in the shadow caches. During partition resizing, \n<inline-formula><tex-math>$\\varepsilon$</tex-math></inline-formula>\n-LAP transfers storage capacity, measured in units of granularity, from the \n<inline-formula><tex-math>$(N-k+1)$</tex-math></inline-formula>\n-th (\n<inline-formula><tex-math>$k\\leq \\frac{N}{2}$</tex-math></inline-formula>\n) partition to the \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n-th partition. A learning threshold parameter, i.e., \n<inline-formula><tex-math>$\\varepsilon$</tex-math></inline-formula>\n, is also introduced to prudently determine when to resize partitions, improving caching efficiency. This can eliminate about 96.8% of unnecessary partition resizing without compromising performance. \n<inline-formula><tex-math>$\\varepsilon$</tex-math></inline-formula>\n-LAP, when deployed in \n<i>PicCloud</i>\n at \n<i>Tencent</i>\n, improved OHR by 9.34% and reduced the average user access latency by 12.5 ms. Experimental results show that \n<inline-formula><tex-math>$\\varepsilon$</tex-math></inline-formula>\n-LAP outperforms other cache partitioning schemes in terms of both OHR and access latency, and it effectively adapts to workload variations.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 3","pages":"942-953"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\varepsilon$ɛ-LAP: A Lightweight and Adaptive Cache Partitioning Scheme With Prudent Resizing Decisions for Content Delivery Networks\",\"authors\":\"Peng Wang;Yu Liu;Ziqi Liu;Zhelong Zhao;Ke Liu;Ke Zhou;Zhihai Huang\",\"doi\":\"10.1109/TCC.2024.3420454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As dependence on Content Delivery Networks (CDNs) increases, there is a growing need for innovative solutions to optimize cache performance amid increasing traffic and complicated cache-sharing workloads. Allocating exclusive resources to applications in CDNs boosts the overall cache hit ratio (OHR), enhancing efficiency. However, the traditional method of creating the miss ratio curve (MRC) is unsuitable for CDNs due to the diverse sizes of items and the vast number of applications, leading to high computational overhead and performance inconsistency. To tackle this issue, we propose a \\n<u>l</u>\\nightweight and \\n<u>a</u>\\ndaptive cache \\n<u>p</u>\\nartitioning scheme called \\n<inline-formula><tex-math>$\\\\varepsilon$</tex-math></inline-formula>\\n-LAP. This scheme uses a corresponding shadow cache for each partition and sorts them based on the average hit numbers on the granularity unit in the shadow caches. During partition resizing, \\n<inline-formula><tex-math>$\\\\varepsilon$</tex-math></inline-formula>\\n-LAP transfers storage capacity, measured in units of granularity, from the \\n<inline-formula><tex-math>$(N-k+1)$</tex-math></inline-formula>\\n-th (\\n<inline-formula><tex-math>$k\\\\leq \\\\frac{N}{2}$</tex-math></inline-formula>\\n) partition to the \\n<inline-formula><tex-math>$k$</tex-math></inline-formula>\\n-th partition. A learning threshold parameter, i.e., \\n<inline-formula><tex-math>$\\\\varepsilon$</tex-math></inline-formula>\\n, is also introduced to prudently determine when to resize partitions, improving caching efficiency. This can eliminate about 96.8% of unnecessary partition resizing without compromising performance. \\n<inline-formula><tex-math>$\\\\varepsilon$</tex-math></inline-formula>\\n-LAP, when deployed in \\n<i>PicCloud</i>\\n at \\n<i>Tencent</i>\\n, improved OHR by 9.34% and reduced the average user access latency by 12.5 ms. Experimental results show that \\n<inline-formula><tex-math>$\\\\varepsilon$</tex-math></inline-formula>\\n-LAP outperforms other cache partitioning schemes in terms of both OHR and access latency, and it effectively adapts to workload variations.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"12 3\",\"pages\":\"942-953\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10577125/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10577125/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着对内容分发网络(CDN)的依赖程度不断增加,人们越来越需要创新的解决方案,以在流量不断增加和复杂的缓存共享工作负载中优化缓存性能。为 CDN 中的应用分配独占资源可提高整体缓存命中率(OHR),从而提高效率。然而,由于项目大小不一,应用数量众多,传统的未命中率曲线(MRC)创建方法并不适合 CDN,会导致高计算开销和性能不一致。为解决这一问题,我们提出了一种名为 $\varepsilon$-LAP 的轻量级自适应缓存分区方案。该方案为每个分区使用一个相应的影子缓存,并根据影子缓存中粒度单位的平均命中率对它们进行排序。在调整分区大小的过程中,$\varepsilon$-LAP 会将存储容量(以粒度单位衡量)从 $(N-k+1)$-th ($k\leq \frac{N}{2}$)分区转移到 $k$-th 分区。此外,还引入了一个学习阈值参数,即 $\varepsilon$,以审慎地决定何时调整分区大小,从而提高缓存效率。这可以在不影响性能的情况下,消除约 96.8% 不必要的分区大小调整。$\varepsilon$-LAP在腾讯PicCloud中部署后,OHR提高了9.34%,用户平均访问延迟降低了12.5毫秒。实验结果表明,$\varepsilon$-LAP在OHR和访问延迟方面均优于其他缓存分区方案,并能有效适应工作负载的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$\varepsilon$ɛ-LAP: A Lightweight and Adaptive Cache Partitioning Scheme With Prudent Resizing Decisions for Content Delivery Networks
As dependence on Content Delivery Networks (CDNs) increases, there is a growing need for innovative solutions to optimize cache performance amid increasing traffic and complicated cache-sharing workloads. Allocating exclusive resources to applications in CDNs boosts the overall cache hit ratio (OHR), enhancing efficiency. However, the traditional method of creating the miss ratio curve (MRC) is unsuitable for CDNs due to the diverse sizes of items and the vast number of applications, leading to high computational overhead and performance inconsistency. To tackle this issue, we propose a l ightweight and a daptive cache p artitioning scheme called $\varepsilon$ -LAP. This scheme uses a corresponding shadow cache for each partition and sorts them based on the average hit numbers on the granularity unit in the shadow caches. During partition resizing, $\varepsilon$ -LAP transfers storage capacity, measured in units of granularity, from the $(N-k+1)$ -th ( $k\leq \frac{N}{2}$ ) partition to the $k$ -th partition. A learning threshold parameter, i.e., $\varepsilon$ , is also introduced to prudently determine when to resize partitions, improving caching efficiency. This can eliminate about 96.8% of unnecessary partition resizing without compromising performance. $\varepsilon$ -LAP, when deployed in PicCloud at Tencent , improved OHR by 9.34% and reduced the average user access latency by 12.5 ms. Experimental results show that $\varepsilon$ -LAP outperforms other cache partitioning schemes in terms of both OHR and access latency, and it effectively adapts to workload variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
WorkloadDiff: Conditional Denoising Diffusion Probabilistic Models for Cloud Workload Prediction A Lightweight Privacy-Preserving Ciphertext Retrieval Scheme Based on Edge Computing Generative Adversarial Privacy for Multimedia Analytics Across the IoT-Edge Continuum Corrections to “DNN Surgery: Accelerating DNN Inference on the Edge through Layer Partitioning” FedPAW: Federated Learning With Personalized Aggregation Weights for Urban Vehicle Speed Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1