{"title":"通过下一代测序方法解决淡水保护难题","authors":"Milena Esser, Markus Brinkmann and Markus Hecker","doi":"10.1039/D4VA00112E","DOIUrl":null,"url":null,"abstract":"<p >Freshwater ecosystems face numerous conservation challenges due to anthropogenic pressures and environmental changes, necessitating advanced monitoring methods for effective conservation strategies. Traditional monitoring approaches have limitations, including low resolution and the inability to address emerging threats or understand the structure–function relationship within ecosystems. This paper explores how Next-Generation Sequencing (NGS) approaches can revolutionize freshwater conservation efforts by integrating unbiased molecular insights into biomonitoring. By leveraging NGS methods a comprehensive understanding of ecosystem dynamics can be achieved. The paper emphasizes the critical link between microbial community composition and ecosystem functioning, highlighting the assessment of functional diversity and activity as key metrics in evaluating ecosystem health. The significant advancements NGS brings to the field enable a proactive approach to conservation strategies and informed management decisions. This paper provides a comprehensive overview of the importance and advancements in integrating NGS methods, marking a paradigm shift in conservation practices and leveraging cutting-edge technologies to safeguard the integrity and resilience of freshwater ecosystems for future generations.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00112e?page=search","citationCount":"0","resultStr":"{\"title\":\"Solving freshwater conservation challenges through next-generation sequencing approaches\",\"authors\":\"Milena Esser, Markus Brinkmann and Markus Hecker\",\"doi\":\"10.1039/D4VA00112E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Freshwater ecosystems face numerous conservation challenges due to anthropogenic pressures and environmental changes, necessitating advanced monitoring methods for effective conservation strategies. Traditional monitoring approaches have limitations, including low resolution and the inability to address emerging threats or understand the structure–function relationship within ecosystems. This paper explores how Next-Generation Sequencing (NGS) approaches can revolutionize freshwater conservation efforts by integrating unbiased molecular insights into biomonitoring. By leveraging NGS methods a comprehensive understanding of ecosystem dynamics can be achieved. The paper emphasizes the critical link between microbial community composition and ecosystem functioning, highlighting the assessment of functional diversity and activity as key metrics in evaluating ecosystem health. The significant advancements NGS brings to the field enable a proactive approach to conservation strategies and informed management decisions. This paper provides a comprehensive overview of the importance and advancements in integrating NGS methods, marking a paradigm shift in conservation practices and leveraging cutting-edge technologies to safeguard the integrity and resilience of freshwater ecosystems for future generations.</p>\",\"PeriodicalId\":72941,\"journal\":{\"name\":\"Environmental science. Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00112e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science. Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/va/d4va00112e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/va/d4va00112e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Solving freshwater conservation challenges through next-generation sequencing approaches
Freshwater ecosystems face numerous conservation challenges due to anthropogenic pressures and environmental changes, necessitating advanced monitoring methods for effective conservation strategies. Traditional monitoring approaches have limitations, including low resolution and the inability to address emerging threats or understand the structure–function relationship within ecosystems. This paper explores how Next-Generation Sequencing (NGS) approaches can revolutionize freshwater conservation efforts by integrating unbiased molecular insights into biomonitoring. By leveraging NGS methods a comprehensive understanding of ecosystem dynamics can be achieved. The paper emphasizes the critical link between microbial community composition and ecosystem functioning, highlighting the assessment of functional diversity and activity as key metrics in evaluating ecosystem health. The significant advancements NGS brings to the field enable a proactive approach to conservation strategies and informed management decisions. This paper provides a comprehensive overview of the importance and advancements in integrating NGS methods, marking a paradigm shift in conservation practices and leveraging cutting-edge technologies to safeguard the integrity and resilience of freshwater ecosystems for future generations.