{"title":"在支持区块链的 DTN 上使用能源和缓冲区效率高的路由协议,最大限度减少奖励","authors":"Nabanita Das, Souvik Basu, Sipra Das Bit","doi":"10.1007/s12083-024-01737-4","DOIUrl":null,"url":null,"abstract":"<p>Delay tolerant networks (DTNs) are a kind of sporadically connected mobile networks in which the network is intermittent, and end-to-end path is hard to establish. However, as devices in DTNs may often have limited energy and buffer, the network performance will be inevitably affected, especially in our application domain, i.e. the post-disaster scenario. Thus, to start with, we present an appropriate energy and buffer efficient routing protocol (EBRout) for efficient message transmission over a smartphone based DTN. Due to limited battery and storage capacity in mobile devices, a major problem in DTNs is to convince forwarder nodes to participate in forwarding messages. Thus, for improving cooperation among the nodes, an incentivizing scheme is proposed which works in two steps. As the first step, we propose an optimization model to find the minimum incentive. Next, we propose a blockchain-based incentive allocation model that uses Ethereum platform built on top of a DTN-Blockchain integrated environment. The use of blockchain helps to create an immutable and globally accessible record for incentive allocation. The performance of the entire scheme is estimated through extensive simulation in ONE simulator, Python PuLP and Ethereum platform. Performance analyses indicate that the average incentive paid using our proposed optimization model is much lower than the average incentive paid without using the optimization model. Also, the results substantiate the efficiency of the proposed scheme over the competing schemes, in terms of delivery ratio, energy and message overhead without negotiating the blockchain performance in terms of processing time and gas consumption.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"159 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incentive minimization using energy and buffer efficient routing protocol over Blockchain enabled DTN\",\"authors\":\"Nabanita Das, Souvik Basu, Sipra Das Bit\",\"doi\":\"10.1007/s12083-024-01737-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Delay tolerant networks (DTNs) are a kind of sporadically connected mobile networks in which the network is intermittent, and end-to-end path is hard to establish. However, as devices in DTNs may often have limited energy and buffer, the network performance will be inevitably affected, especially in our application domain, i.e. the post-disaster scenario. Thus, to start with, we present an appropriate energy and buffer efficient routing protocol (EBRout) for efficient message transmission over a smartphone based DTN. Due to limited battery and storage capacity in mobile devices, a major problem in DTNs is to convince forwarder nodes to participate in forwarding messages. Thus, for improving cooperation among the nodes, an incentivizing scheme is proposed which works in two steps. As the first step, we propose an optimization model to find the minimum incentive. Next, we propose a blockchain-based incentive allocation model that uses Ethereum platform built on top of a DTN-Blockchain integrated environment. The use of blockchain helps to create an immutable and globally accessible record for incentive allocation. The performance of the entire scheme is estimated through extensive simulation in ONE simulator, Python PuLP and Ethereum platform. Performance analyses indicate that the average incentive paid using our proposed optimization model is much lower than the average incentive paid without using the optimization model. Also, the results substantiate the efficiency of the proposed scheme over the competing schemes, in terms of delivery ratio, energy and message overhead without negotiating the blockchain performance in terms of processing time and gas consumption.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01737-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01737-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Incentive minimization using energy and buffer efficient routing protocol over Blockchain enabled DTN
Delay tolerant networks (DTNs) are a kind of sporadically connected mobile networks in which the network is intermittent, and end-to-end path is hard to establish. However, as devices in DTNs may often have limited energy and buffer, the network performance will be inevitably affected, especially in our application domain, i.e. the post-disaster scenario. Thus, to start with, we present an appropriate energy and buffer efficient routing protocol (EBRout) for efficient message transmission over a smartphone based DTN. Due to limited battery and storage capacity in mobile devices, a major problem in DTNs is to convince forwarder nodes to participate in forwarding messages. Thus, for improving cooperation among the nodes, an incentivizing scheme is proposed which works in two steps. As the first step, we propose an optimization model to find the minimum incentive. Next, we propose a blockchain-based incentive allocation model that uses Ethereum platform built on top of a DTN-Blockchain integrated environment. The use of blockchain helps to create an immutable and globally accessible record for incentive allocation. The performance of the entire scheme is estimated through extensive simulation in ONE simulator, Python PuLP and Ethereum platform. Performance analyses indicate that the average incentive paid using our proposed optimization model is much lower than the average incentive paid without using the optimization model. Also, the results substantiate the efficiency of the proposed scheme over the competing schemes, in terms of delivery ratio, energy and message overhead without negotiating the blockchain performance in terms of processing time and gas consumption.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.