Qinglei Kong, Yifan Wang, Maode Ma, Xiaodong Qu, Haiyong Bao
{"title":"低地轨道卫星双移动网络中的安全定位管理方案","authors":"Qinglei Kong, Yifan Wang, Maode Ma, Xiaodong Qu, Haiyong Bao","doi":"10.1007/s12083-024-01742-7","DOIUrl":null,"url":null,"abstract":"<p>Low Earth orbit (LEO) communication satellite constellation provides network service to remote areas without terrestrialnetwork coverage. In sparsely populated areas, the deployment of ground stations is also scarce, due to geographic constraints and the lack of terrestrial backhaul. Due to the constant orbiting of the satellite constellation, location management in LEO satellite-assisted vehicular networks faces the challenges of the dual mobility of access points and users. In this paper, we propose a privacy-preserving location management scheme in an LEO satellite network with sparsely deployed ground stations. Specifically, the proposed scheme exploits the RSA-based accumulator and the Non-Interactive Proof-of-Knowledge of Exponent (<span>\\(\\textsf{NI}\\)</span>-<span>\\(\\textsf{PoKE}\\)</span>) protocol to verify the linkages between satellites and vehicles. Meanwhile, our scheme combines the homomorphic Symmetric Homomorphic Encryption (<span>\\(\\textsf{SHE}\\)</span>) cryptosystem, the Secure Less than (<span>\\(\\textsf{SLESS}\\)</span>) protocol, and the KdTree structure, to identify the potential set of accessing satellites. Security analysis shows that the proposed scheme achieves privacy preservation and authentication. Performance evaluations show that ours achieve high computation and communication efficiency.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"9 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A secure location management scheme in an LEO-satellite network with dual-mobility\",\"authors\":\"Qinglei Kong, Yifan Wang, Maode Ma, Xiaodong Qu, Haiyong Bao\",\"doi\":\"10.1007/s12083-024-01742-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low Earth orbit (LEO) communication satellite constellation provides network service to remote areas without terrestrialnetwork coverage. In sparsely populated areas, the deployment of ground stations is also scarce, due to geographic constraints and the lack of terrestrial backhaul. Due to the constant orbiting of the satellite constellation, location management in LEO satellite-assisted vehicular networks faces the challenges of the dual mobility of access points and users. In this paper, we propose a privacy-preserving location management scheme in an LEO satellite network with sparsely deployed ground stations. Specifically, the proposed scheme exploits the RSA-based accumulator and the Non-Interactive Proof-of-Knowledge of Exponent (<span>\\\\(\\\\textsf{NI}\\\\)</span>-<span>\\\\(\\\\textsf{PoKE}\\\\)</span>) protocol to verify the linkages between satellites and vehicles. Meanwhile, our scheme combines the homomorphic Symmetric Homomorphic Encryption (<span>\\\\(\\\\textsf{SHE}\\\\)</span>) cryptosystem, the Secure Less than (<span>\\\\(\\\\textsf{SLESS}\\\\)</span>) protocol, and the KdTree structure, to identify the potential set of accessing satellites. Security analysis shows that the proposed scheme achieves privacy preservation and authentication. Performance evaluations show that ours achieve high computation and communication efficiency.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01742-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01742-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A secure location management scheme in an LEO-satellite network with dual-mobility
Low Earth orbit (LEO) communication satellite constellation provides network service to remote areas without terrestrialnetwork coverage. In sparsely populated areas, the deployment of ground stations is also scarce, due to geographic constraints and the lack of terrestrial backhaul. Due to the constant orbiting of the satellite constellation, location management in LEO satellite-assisted vehicular networks faces the challenges of the dual mobility of access points and users. In this paper, we propose a privacy-preserving location management scheme in an LEO satellite network with sparsely deployed ground stations. Specifically, the proposed scheme exploits the RSA-based accumulator and the Non-Interactive Proof-of-Knowledge of Exponent (\(\textsf{NI}\)-\(\textsf{PoKE}\)) protocol to verify the linkages between satellites and vehicles. Meanwhile, our scheme combines the homomorphic Symmetric Homomorphic Encryption (\(\textsf{SHE}\)) cryptosystem, the Secure Less than (\(\textsf{SLESS}\)) protocol, and the KdTree structure, to identify the potential set of accessing satellites. Security analysis shows that the proposed scheme achieves privacy preservation and authentication. Performance evaluations show that ours achieve high computation and communication efficiency.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.