用于骨组织工程的 Ag/Ti 共掺羟基磷灰石的系统研究与可控合成

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-06-26 DOI:10.1016/j.mtchem.2024.102175
Hazal Gergeroglu, Mehmet Faruk Ebeoglugil, Sule Bayrak, Didem Aksu, Yavar Taghipour Azar
{"title":"用于骨组织工程的 Ag/Ti 共掺羟基磷灰石的系统研究与可控合成","authors":"Hazal Gergeroglu, Mehmet Faruk Ebeoglugil, Sule Bayrak, Didem Aksu, Yavar Taghipour Azar","doi":"10.1016/j.mtchem.2024.102175","DOIUrl":null,"url":null,"abstract":"Hydroxyapatite (HA) is a cornerstone bio ceramic in bone tissue engineering applications, prized for its inherent biocompatibility and structural resemblance to natural bone tissue. However, both porous and dense, conventional HA formulations face notable stability and mechanical robustness constraints, impeding their broader utility. We introduce an innovative biomaterial synthesized via a straightforward and efficient sol-gel method to surmount these challenges and imbue novel scaffolds with multifunctional capabilities. Leveraging a double doping strategy, our approach seeks to enhance mechanical performance and incorporate antibacterial features, maintaining the biocompatibility of HA-based scaffolds for advanced tissue engineering applications. In pursuit of this objective, we synthesized Ag-doped, Ag, Ti-doped, and Ti-doped HA samples to explore the impact of varying dopant types and concentrations on various structural, thermal, crystallographic, chemical, morphological, mechanical, and biocompatibility characteristics. X-ray Diffraction (XRD) analysis confirmed the presence of apatitic phase compositions across all samples, while Fourier-transform Infrared Spectroscopy (FTIR) data corroborated phosphate formation and functional group identification. Scanning Electron Microscopy (SEM) studies revealed a correlation between particle size and dopant concentration, consistent with XRD findings. Nanoindentation results indicated optimal mechanical performance was achieved with balanced incorporation of Ag and Ti ions despite increased Vickers microhardness with higher Ti concentrations. All doped samples exhibited effective antibacterial activity against () and (), except for the Ti-doped HA sample. Moreover, the HA sample co-doped with equal amounts of Ag and Ti demonstrated noncytotoxicity for human lung cancer (A549) cells. In contrast, all doped samples exhibited cytotoxicity towards human prostate cancer cell (PC3) cells. Statistical analysis confirmed a synergistic enhancement of biocompatibility and mechanical performance in HA samples doped with Ag and Ti ions in equal proportions. In conclusion, our study presents a simple and effective approach for enhancing HA's mechanical and antibacterial properties through co-doping with Ag and Ti. This innovative biomaterial holds significant promise for advancing bone tissue engineering applications.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic investigation and controlled synthesis of Ag/Ti co-doped hydroxyapatite for bone tissue engineering\",\"authors\":\"Hazal Gergeroglu, Mehmet Faruk Ebeoglugil, Sule Bayrak, Didem Aksu, Yavar Taghipour Azar\",\"doi\":\"10.1016/j.mtchem.2024.102175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydroxyapatite (HA) is a cornerstone bio ceramic in bone tissue engineering applications, prized for its inherent biocompatibility and structural resemblance to natural bone tissue. However, both porous and dense, conventional HA formulations face notable stability and mechanical robustness constraints, impeding their broader utility. We introduce an innovative biomaterial synthesized via a straightforward and efficient sol-gel method to surmount these challenges and imbue novel scaffolds with multifunctional capabilities. Leveraging a double doping strategy, our approach seeks to enhance mechanical performance and incorporate antibacterial features, maintaining the biocompatibility of HA-based scaffolds for advanced tissue engineering applications. In pursuit of this objective, we synthesized Ag-doped, Ag, Ti-doped, and Ti-doped HA samples to explore the impact of varying dopant types and concentrations on various structural, thermal, crystallographic, chemical, morphological, mechanical, and biocompatibility characteristics. X-ray Diffraction (XRD) analysis confirmed the presence of apatitic phase compositions across all samples, while Fourier-transform Infrared Spectroscopy (FTIR) data corroborated phosphate formation and functional group identification. Scanning Electron Microscopy (SEM) studies revealed a correlation between particle size and dopant concentration, consistent with XRD findings. Nanoindentation results indicated optimal mechanical performance was achieved with balanced incorporation of Ag and Ti ions despite increased Vickers microhardness with higher Ti concentrations. All doped samples exhibited effective antibacterial activity against () and (), except for the Ti-doped HA sample. Moreover, the HA sample co-doped with equal amounts of Ag and Ti demonstrated noncytotoxicity for human lung cancer (A549) cells. In contrast, all doped samples exhibited cytotoxicity towards human prostate cancer cell (PC3) cells. Statistical analysis confirmed a synergistic enhancement of biocompatibility and mechanical performance in HA samples doped with Ag and Ti ions in equal proportions. In conclusion, our study presents a simple and effective approach for enhancing HA's mechanical and antibacterial properties through co-doping with Ag and Ti. This innovative biomaterial holds significant promise for advancing bone tissue engineering applications.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102175\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102175","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

羟基磷灰石(HA)是骨组织工程应用中的基石生物陶瓷,因其固有的生物相容性和与天然骨组织相似的结构而备受推崇。然而,无论是多孔还是致密,传统的 HA 配方都面临着明显的稳定性和机械坚固性限制,阻碍了其更广泛的应用。我们介绍了一种通过简单高效的溶胶-凝胶法合成的创新生物材料,以克服这些挑战并赋予新型支架以多功能性。利用双重掺杂策略,我们的方法旨在提高机械性能并加入抗菌功能,同时保持 HA 基支架的生物相容性,以用于先进的组织工程应用。为了实现这一目标,我们合成了掺银、掺银、掺钛和掺钛的 HA 样品,以探索不同掺杂剂类型和浓度对各种结构、热学、晶体学、化学、形态学、机械和生物相容性特征的影响。X 射线衍射(XRD)分析证实了所有样品中磷灰石相组成的存在,而傅立叶变换红外光谱(FTIR)数据则证实了磷酸盐的形成和官能团的识别。扫描电子显微镜(SEM)研究表明,颗粒大小与掺杂浓度之间存在相关性,这与 XRD 的研究结果一致。纳米压痕试验结果表明,尽管钛离子浓度越高,维氏硬度越大,但在均衡掺入 Ag 离子和钛离子的情况下,仍能获得最佳机械性能。除掺 Ti- 的 HA 样品外,所有掺杂样品都对 ()和 ()具有有效的抗菌活性。此外,掺杂了等量 Ag 和 Ti 的 HA 样品对人类肺癌(A549)细胞无细胞毒性。相比之下,所有掺杂样品都对人前列腺癌细胞(PC3)具有细胞毒性。统计分析证实,等比例掺杂银离子和钛离子的 HA 样品在生物相容性和机械性能方面具有协同增效作用。总之,我们的研究提出了一种简单有效的方法,通过共同掺杂 Ag 和 Ti 来增强 HA 的机械性能和抗菌性能。这种创新的生物材料有望推动骨组织工程应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic investigation and controlled synthesis of Ag/Ti co-doped hydroxyapatite for bone tissue engineering
Hydroxyapatite (HA) is a cornerstone bio ceramic in bone tissue engineering applications, prized for its inherent biocompatibility and structural resemblance to natural bone tissue. However, both porous and dense, conventional HA formulations face notable stability and mechanical robustness constraints, impeding their broader utility. We introduce an innovative biomaterial synthesized via a straightforward and efficient sol-gel method to surmount these challenges and imbue novel scaffolds with multifunctional capabilities. Leveraging a double doping strategy, our approach seeks to enhance mechanical performance and incorporate antibacterial features, maintaining the biocompatibility of HA-based scaffolds for advanced tissue engineering applications. In pursuit of this objective, we synthesized Ag-doped, Ag, Ti-doped, and Ti-doped HA samples to explore the impact of varying dopant types and concentrations on various structural, thermal, crystallographic, chemical, morphological, mechanical, and biocompatibility characteristics. X-ray Diffraction (XRD) analysis confirmed the presence of apatitic phase compositions across all samples, while Fourier-transform Infrared Spectroscopy (FTIR) data corroborated phosphate formation and functional group identification. Scanning Electron Microscopy (SEM) studies revealed a correlation between particle size and dopant concentration, consistent with XRD findings. Nanoindentation results indicated optimal mechanical performance was achieved with balanced incorporation of Ag and Ti ions despite increased Vickers microhardness with higher Ti concentrations. All doped samples exhibited effective antibacterial activity against () and (), except for the Ti-doped HA sample. Moreover, the HA sample co-doped with equal amounts of Ag and Ti demonstrated noncytotoxicity for human lung cancer (A549) cells. In contrast, all doped samples exhibited cytotoxicity towards human prostate cancer cell (PC3) cells. Statistical analysis confirmed a synergistic enhancement of biocompatibility and mechanical performance in HA samples doped with Ag and Ti ions in equal proportions. In conclusion, our study presents a simple and effective approach for enhancing HA's mechanical and antibacterial properties through co-doping with Ag and Ti. This innovative biomaterial holds significant promise for advancing bone tissue engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1