用于去除废水中亚甲蓝染料的聚醚砜/洋甘菊混合基质膜

IF 0.6 4区 化学 Q4 CHEMISTRY, APPLIED Russian Journal of Applied Chemistry Pub Date : 2024-06-22 DOI:10.1134/s1070427224010130
Rana I. Raja, Khalid T. Rashid, Manal A. Toma
{"title":"用于去除废水中亚甲蓝染料的聚醚砜/洋甘菊混合基质膜","authors":"Rana I. Raja, Khalid T. Rashid, Manal A. Toma","doi":"10.1134/s1070427224010130","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Flux decline is one of the most significant defies ultrafiltration (UF) must overcome. One viable approach to address this issue involves the implementation of nano-additives into the membrane matrix. In this research, the potential of chamomile leaf nanoparticles (Chm NPs) as an eco-friendly material for use in UF membrane synthesis was explored. To better understand the impact of Chm on the production of PES UF membranes, a range of membranes were created by introducing varying amounts of Chm into the casting solution. The produced membranes were thoroughly evaluated, focusing on aspects such as porosity, pore size, hydrophilicity, membrane morphology, and UF performance. Manufactured PES/Chm membranes demonstrated significantly increased permeate water flux (PWF) (up to 367 L/m<sup>2</sup> h), which was three times that of the pristine PES membrane (126 L/m<sup>2</sup> h). Beside Methylene Blue dye (MB) rejection, it was obtained a high removal percent of about 94 %. Additionally, decreased contact angle (C.A.) for modified membranes (47%), compared with pristine PES membranes, all these results led to enhance the membrane permeate flux and rejection. The utilization of chamomile as a novel environmentally friendly addition holds significant potential in the production of UF membranes for wastewater treatment.</p>","PeriodicalId":757,"journal":{"name":"Russian Journal of Applied Chemistry","volume":"46 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyethersulfone/Chamomile Mixed Matrix Membrane for Methylene Blue Dye Removal from Wastewater\",\"authors\":\"Rana I. Raja, Khalid T. Rashid, Manal A. Toma\",\"doi\":\"10.1134/s1070427224010130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Flux decline is one of the most significant defies ultrafiltration (UF) must overcome. One viable approach to address this issue involves the implementation of nano-additives into the membrane matrix. In this research, the potential of chamomile leaf nanoparticles (Chm NPs) as an eco-friendly material for use in UF membrane synthesis was explored. To better understand the impact of Chm on the production of PES UF membranes, a range of membranes were created by introducing varying amounts of Chm into the casting solution. The produced membranes were thoroughly evaluated, focusing on aspects such as porosity, pore size, hydrophilicity, membrane morphology, and UF performance. Manufactured PES/Chm membranes demonstrated significantly increased permeate water flux (PWF) (up to 367 L/m<sup>2</sup> h), which was three times that of the pristine PES membrane (126 L/m<sup>2</sup> h). Beside Methylene Blue dye (MB) rejection, it was obtained a high removal percent of about 94 %. Additionally, decreased contact angle (C.A.) for modified membranes (47%), compared with pristine PES membranes, all these results led to enhance the membrane permeate flux and rejection. The utilization of chamomile as a novel environmentally friendly addition holds significant potential in the production of UF membranes for wastewater treatment.</p>\",\"PeriodicalId\":757,\"journal\":{\"name\":\"Russian Journal of Applied Chemistry\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s1070427224010130\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s1070427224010130","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要流量下降是超滤(UF)必须克服的最重要的障碍之一。解决这一问题的可行方法之一是在膜基质中加入纳米添加剂。本研究探讨了甘菊叶纳米颗粒(Chm NPs)作为一种生态友好材料用于超滤膜合成的潜力。为了更好地了解 Chm 对聚醚砜超滤膜生产的影响,我们在浇铸溶液中引入了不同量的 Chm,从而生产出一系列膜。对生产出的膜进行了全面评估,重点关注孔隙率、孔径、亲水性、膜形态和超滤性能等方面。生产出的 PES/Chm 膜的渗透水通量(PWF)明显增加(高达 367 升/平方米小时),是原始 PES 膜(126 升/平方米小时)的三倍。除了亚甲基蓝染料(MB)的去除率外,还达到了约 94% 的高去除率。此外,与原始聚醚砜膜相比,改性膜的接触角(C.A.)减小了 47%,所有这些结果都提高了膜的渗透通量和去除率。将甘菊作为一种新型环保添加剂,在生产用于废水处理的超滤膜方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyethersulfone/Chamomile Mixed Matrix Membrane for Methylene Blue Dye Removal from Wastewater

Abstract

Flux decline is one of the most significant defies ultrafiltration (UF) must overcome. One viable approach to address this issue involves the implementation of nano-additives into the membrane matrix. In this research, the potential of chamomile leaf nanoparticles (Chm NPs) as an eco-friendly material for use in UF membrane synthesis was explored. To better understand the impact of Chm on the production of PES UF membranes, a range of membranes were created by introducing varying amounts of Chm into the casting solution. The produced membranes were thoroughly evaluated, focusing on aspects such as porosity, pore size, hydrophilicity, membrane morphology, and UF performance. Manufactured PES/Chm membranes demonstrated significantly increased permeate water flux (PWF) (up to 367 L/m2 h), which was three times that of the pristine PES membrane (126 L/m2 h). Beside Methylene Blue dye (MB) rejection, it was obtained a high removal percent of about 94 %. Additionally, decreased contact angle (C.A.) for modified membranes (47%), compared with pristine PES membranes, all these results led to enhance the membrane permeate flux and rejection. The utilization of chamomile as a novel environmentally friendly addition holds significant potential in the production of UF membranes for wastewater treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
63
审稿时长
2-4 weeks
期刊介绍: Russian Journal of Applied Chemistry (Zhurnal prikladnoi khimii) was founded in 1928. It covers all application problems of modern chemistry, including the structure of inorganic and organic compounds, kinetics and mechanisms of chemical reactions, problems of chemical processes and apparatus, borderline problems of chemistry, and applied research.
期刊最新文献
Investigation of Kinetic, Isotherm and Studying Adsorption Efficiency of Cd(II), Zn(II) by Low-Cost Activated Carbon Synthesis of Hierarchical MeAPO-5 Molecular Sieve and Optimization of Its Catalytic Oxidation of Benzene to Phenol Based on Response Surface Method Preparation and Sensing Applications of PAMgA/GL Conductive Hydrogels with Antifreezing, High Toughness and High Adhesion Lignin-Based Adhesives: Extraction, Chemical Modification, and Challenges in Production Sorption of Gases in Additive Polynorbornene with Norbornyl Substituents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1