优化聚醚砜/Fe3O4/氧化锌膜上对环境废水有影响的相分离参数

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Industrial and Engineering Chemistry Pub Date : 2024-06-25 DOI:10.1016/j.jiec.2024.06.033
N.S.M. Kubheka, M.E. Managa, M.M. Motsa, E.N. Nxumalo, M.J. Moloto
{"title":"优化聚醚砜/Fe3O4/氧化锌膜上对环境废水有影响的相分离参数","authors":"N.S.M. Kubheka, M.E. Managa, M.M. Motsa, E.N. Nxumalo, M.J. Moloto","doi":"10.1016/j.jiec.2024.06.033","DOIUrl":null,"url":null,"abstract":"Membrane fabrication via phase inversion depends on various influential parameters which may result in enhanced membrane performance. In this study, metal oxide nanoparticles i.e. FeO/ZnO were modified with glycine and diethylene glycol and then embedded onto polyethersulfone (PES) membranes to form PES/FeO/ZnO membranes. These membranes were used to remove manganese, copper, and lead ions from wastewater. Transmission electron microscope images confirmed that FeO/ZnO were composed of cubic and spherical morphologies. Fourier Transform Infrared spectra confirmed that FeO/ZnO nanoparticles were successfully modified using glycine and diethylene glycol. The surface and cross-sectional images showed that polyvinylpyrrolidone (PVP) and the coagulation bath temperature influenced the resulting membrane surface and confirmed the successful addition of nanocomposite concentrations (0.25, 0.50 and 0.75 wt%) onto PES membranes. The 0.50 wt% FeO/ZnO loaded membrane showed highest permeability with water flux of 682 L/m.h, and high flux recovery ratio (%) of 98.75 %, 88.88 % and 71.77 % for BSA, HA and wastewater samples, respectively, indicative of less prone to fouling. The chemical and mechanical enhancement through PVP concentration, coagulation bath temperature and nanoparticle loading significantly influenced the selectivity and fouling propensity of the PES membranes. Therefore, all parameters played a role in tuning the chemical and physical structure of the prepared membranes.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing influential phase separation parameters on polyethersulfone/ Fe3O4/ZnO membranes for environmental wastewater\",\"authors\":\"N.S.M. Kubheka, M.E. Managa, M.M. Motsa, E.N. Nxumalo, M.J. Moloto\",\"doi\":\"10.1016/j.jiec.2024.06.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane fabrication via phase inversion depends on various influential parameters which may result in enhanced membrane performance. In this study, metal oxide nanoparticles i.e. FeO/ZnO were modified with glycine and diethylene glycol and then embedded onto polyethersulfone (PES) membranes to form PES/FeO/ZnO membranes. These membranes were used to remove manganese, copper, and lead ions from wastewater. Transmission electron microscope images confirmed that FeO/ZnO were composed of cubic and spherical morphologies. Fourier Transform Infrared spectra confirmed that FeO/ZnO nanoparticles were successfully modified using glycine and diethylene glycol. The surface and cross-sectional images showed that polyvinylpyrrolidone (PVP) and the coagulation bath temperature influenced the resulting membrane surface and confirmed the successful addition of nanocomposite concentrations (0.25, 0.50 and 0.75 wt%) onto PES membranes. The 0.50 wt% FeO/ZnO loaded membrane showed highest permeability with water flux of 682 L/m.h, and high flux recovery ratio (%) of 98.75 %, 88.88 % and 71.77 % for BSA, HA and wastewater samples, respectively, indicative of less prone to fouling. The chemical and mechanical enhancement through PVP concentration, coagulation bath temperature and nanoparticle loading significantly influenced the selectivity and fouling propensity of the PES membranes. Therefore, all parameters played a role in tuning the chemical and physical structure of the prepared membranes.\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jiec.2024.06.033\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.06.033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过相反转制造膜取决于各种影响参数,这些参数可能会提高膜的性能。在这项研究中,用甘氨酸和二甘醇对金属氧化物纳米颗粒(即 FeO/ZnO)进行改性,然后将其嵌入聚醚砜(PES)膜,形成 PES/FeO/ZnO 膜。这些膜用于去除废水中的锰、铜和铅离子。透射电子显微镜图像证实,FeO/ZnO 由立方体和球形形态组成。傅立叶变换红外光谱证实,FeO/ZnO 纳米颗粒成功地使用甘氨酸和二甘醇进行了改性。表面和横截面图像显示,聚乙烯吡咯烷酮(PVP)和凝固浴温度对膜表面产生了影响,并证实在聚醚砜膜上成功添加了纳米复合材料浓度(0.25、0.50 和 0.75 wt%)。添加了 0.50 wt% FeO/ZnO 的膜显示出最高的渗透性,水通量为 682 L/m.h,对 BSA、HA 和废水样品的高通量回收率(%)分别为 98.75%、88.88% 和 71.77%,表明不易结垢。通过聚乙烯吡咯烷酮浓度、混凝浴温度和纳米粒子装载量进行的化学和机械强化显著影响了聚醚砜膜的选择性和污垢倾向。因此,所有参数在调整制备的膜的化学和物理结构方面都发挥了作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing influential phase separation parameters on polyethersulfone/ Fe3O4/ZnO membranes for environmental wastewater
Membrane fabrication via phase inversion depends on various influential parameters which may result in enhanced membrane performance. In this study, metal oxide nanoparticles i.e. FeO/ZnO were modified with glycine and diethylene glycol and then embedded onto polyethersulfone (PES) membranes to form PES/FeO/ZnO membranes. These membranes were used to remove manganese, copper, and lead ions from wastewater. Transmission electron microscope images confirmed that FeO/ZnO were composed of cubic and spherical morphologies. Fourier Transform Infrared spectra confirmed that FeO/ZnO nanoparticles were successfully modified using glycine and diethylene glycol. The surface and cross-sectional images showed that polyvinylpyrrolidone (PVP) and the coagulation bath temperature influenced the resulting membrane surface and confirmed the successful addition of nanocomposite concentrations (0.25, 0.50 and 0.75 wt%) onto PES membranes. The 0.50 wt% FeO/ZnO loaded membrane showed highest permeability with water flux of 682 L/m.h, and high flux recovery ratio (%) of 98.75 %, 88.88 % and 71.77 % for BSA, HA and wastewater samples, respectively, indicative of less prone to fouling. The chemical and mechanical enhancement through PVP concentration, coagulation bath temperature and nanoparticle loading significantly influenced the selectivity and fouling propensity of the PES membranes. Therefore, all parameters played a role in tuning the chemical and physical structure of the prepared membranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
期刊最新文献
Sodium-doped LiFe0.5Mn0.5PO4 using sodium gluconate as both reducing agent and a doping source in Lithium-ion batteries Editorial Board Construction on ionic organic polymers by multi-components reactions: Experimental and kinetics modeling of efficient CO2-fixation and high iodine vapor adsorption Flash calcination of magnesite in a one-throughput transport bed: reaction characterization and industrial justification Efficient removal of Pb(II) and Cd(II) from water by polyethyleneimine-amidated sepiolite-sodium alginate composite microspheres: Characterization and mechanistic analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1