优化数据中心的资源消耗并降低能耗,一种新颖的虚拟机替换数学模型和高效算法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-20 DOI:10.1007/s10723-024-09772-4
Reza Rabieyan, Ramin Yahyapour, Patrick Jahnke
{"title":"优化数据中心的资源消耗并降低能耗,一种新颖的虚拟机替换数学模型和高效算法","authors":"Reza Rabieyan, Ramin Yahyapour, Patrick Jahnke","doi":"10.1007/s10723-024-09772-4","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the issue of power consumption in virtualized cloud data centers by proposing a virtual machine (VM) replacement model and a corresponding algorithm. The model incorporates multi-objective functions, aiming to optimize VM selection based on weights and minimize resource utilization disparities across hosts. Constraints are incorporated to ensure that CPU utilization remains close to the average CPU usage while mitigating overutilization in memory and network bandwidth usage. The proposed algorithm offers a fast and efficient solution with minimal VM replacements. The experimental simulation results demonstrate significant reductions in power consumption compared with a benchmark model. The proposed model and algorithm have been implemented and operated within a real-world cloud infrastructure, emphasizing their practicality.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Resource Consumption and Reducing Power Usage in Data Centers, A Novel Mathematical VM Replacement Model and Efficient Algorithm\",\"authors\":\"Reza Rabieyan, Ramin Yahyapour, Patrick Jahnke\",\"doi\":\"10.1007/s10723-024-09772-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses the issue of power consumption in virtualized cloud data centers by proposing a virtual machine (VM) replacement model and a corresponding algorithm. The model incorporates multi-objective functions, aiming to optimize VM selection based on weights and minimize resource utilization disparities across hosts. Constraints are incorporated to ensure that CPU utilization remains close to the average CPU usage while mitigating overutilization in memory and network bandwidth usage. The proposed algorithm offers a fast and efficient solution with minimal VM replacements. The experimental simulation results demonstrate significant reductions in power consumption compared with a benchmark model. The proposed model and algorithm have been implemented and operated within a real-world cloud infrastructure, emphasizing their practicality.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-024-09772-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09772-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过提出一种虚拟机(VM)替换模型和相应算法,解决了虚拟化云数据中心的能耗问题。该模型包含多目标函数,旨在根据权重优化虚拟机选择,并最大限度地减少主机间的资源利用率差异。该模型纳入了一些约束条件,以确保 CPU 利用率接近平均 CPU 利用率,同时减少内存和网络带宽的过度利用。所提出的算法提供了一种快速高效的解决方案,只需最少的虚拟机替换。实验模拟结果表明,与基准模型相比,功耗显著降低。提出的模型和算法已在现实世界的云基础设施中实施和运行,强调了其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Resource Consumption and Reducing Power Usage in Data Centers, A Novel Mathematical VM Replacement Model and Efficient Algorithm

This study addresses the issue of power consumption in virtualized cloud data centers by proposing a virtual machine (VM) replacement model and a corresponding algorithm. The model incorporates multi-objective functions, aiming to optimize VM selection based on weights and minimize resource utilization disparities across hosts. Constraints are incorporated to ensure that CPU utilization remains close to the average CPU usage while mitigating overutilization in memory and network bandwidth usage. The proposed algorithm offers a fast and efficient solution with minimal VM replacements. The experimental simulation results demonstrate significant reductions in power consumption compared with a benchmark model. The proposed model and algorithm have been implemented and operated within a real-world cloud infrastructure, emphasizing their practicality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1