EQGSA-DPW:基于量子-GSA 算法的云计算环境中科学工作流的数据布局

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-18 DOI:10.1007/s10723-024-09771-5
Zaki Brahmi, Rihab Derouiche
{"title":"EQGSA-DPW:基于量子-GSA 算法的云计算环境中科学工作流的数据布局","authors":"Zaki Brahmi, Rihab Derouiche","doi":"10.1007/s10723-024-09771-5","DOIUrl":null,"url":null,"abstract":"<p>The processing of scientific workflow (SW) in geo-distributed cloud computing holds significant importance in the placement of massive data between various tasks. However, data movement across storage services is a main concern in the geo-distributed data centers, which entails issues related to the cost and energy consumption of both storage services and network infrastructure. Aiming to optimize data placement for SW, this paper proposes EQGSA-DPW a novel algorithm leveraging quantum computing and swarm intelligence optimization to intelligently reduce costs and energy consumption when a SW is processed in multi-cloud. EQGSA-DPW considers multiple objectives (e.g., transmission bandwidth, cost and energy consumption of both service and communication) and improves the GSA algorithm by using the log-sigmoid transfer function as a gravitational constant <i>G</i> and updating agent position by quantum rotation angle amplitude for more diversification. Moreover, to assist EQGSA-DPW in finding the optima, an initial guess is proposed. The performance of our EQGSA-DPW algorithm is evaluated via extensive experiments, which show that our data placement method achieves significantly better performance in terms of cost, energy, and data transfer than competing algorithms. For instance, in terms of energy consumption, EQGSA-DPW can on average achieve up to <span>\\(25\\%\\)</span>, <span>\\(14\\%\\)</span>, and <span>\\(40\\%\\)</span> reduction over that of GSA, PSO, and ACO-DPDGW algorithms, respectively. As for the storage services cost, EQGSA-DPW values are the lowest.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EQGSA-DPW: A Quantum-GSA Algorithm-Based Data Placement for Scientific Workflow in Cloud Computing Environment\",\"authors\":\"Zaki Brahmi, Rihab Derouiche\",\"doi\":\"10.1007/s10723-024-09771-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The processing of scientific workflow (SW) in geo-distributed cloud computing holds significant importance in the placement of massive data between various tasks. However, data movement across storage services is a main concern in the geo-distributed data centers, which entails issues related to the cost and energy consumption of both storage services and network infrastructure. Aiming to optimize data placement for SW, this paper proposes EQGSA-DPW a novel algorithm leveraging quantum computing and swarm intelligence optimization to intelligently reduce costs and energy consumption when a SW is processed in multi-cloud. EQGSA-DPW considers multiple objectives (e.g., transmission bandwidth, cost and energy consumption of both service and communication) and improves the GSA algorithm by using the log-sigmoid transfer function as a gravitational constant <i>G</i> and updating agent position by quantum rotation angle amplitude for more diversification. Moreover, to assist EQGSA-DPW in finding the optima, an initial guess is proposed. The performance of our EQGSA-DPW algorithm is evaluated via extensive experiments, which show that our data placement method achieves significantly better performance in terms of cost, energy, and data transfer than competing algorithms. For instance, in terms of energy consumption, EQGSA-DPW can on average achieve up to <span>\\\\(25\\\\%\\\\)</span>, <span>\\\\(14\\\\%\\\\)</span>, and <span>\\\\(40\\\\%\\\\)</span> reduction over that of GSA, PSO, and ACO-DPDGW algorithms, respectively. As for the storage services cost, EQGSA-DPW values are the lowest.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-024-09771-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09771-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在地理分布式云计算中处理科学工作流(SW),对于在各种任务之间放置海量数据具有重要意义。然而,在地理分布式数据中心中,数据在存储服务间的移动是一个主要问题,这涉及到存储服务和网络基础设施的成本和能耗问题。为了优化 SW 的数据放置,本文提出了 EQGSA-DPW,这是一种利用量子计算和蜂群智能优化的新型算法,可在多云处理 SW 时智能地降低成本和能耗。EQGSA-DPW 考虑了多个目标(如传输带宽、服务和通信的成本和能耗),并改进了 GSA 算法,使用对数-半规传递函数作为引力常数 G,并通过量子旋转角振幅更新代理位置,使其更加多样化。此外,为了帮助 EQGSA-DPW 找到最优值,还提出了一个初始猜测。我们通过大量实验对 EQGSA-DPW 算法的性能进行了评估,结果表明我们的数据放置方法在成本、能耗和数据传输方面的性能明显优于其他竞争算法。例如,在能耗方面,与GSA、PSO和ACO-DPDGW算法相比,EQGSA-DPW平均可分别减少25%、14%和40%的能耗。至于存储服务成本,EQGSA-DPW的值最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EQGSA-DPW: A Quantum-GSA Algorithm-Based Data Placement for Scientific Workflow in Cloud Computing Environment

The processing of scientific workflow (SW) in geo-distributed cloud computing holds significant importance in the placement of massive data between various tasks. However, data movement across storage services is a main concern in the geo-distributed data centers, which entails issues related to the cost and energy consumption of both storage services and network infrastructure. Aiming to optimize data placement for SW, this paper proposes EQGSA-DPW a novel algorithm leveraging quantum computing and swarm intelligence optimization to intelligently reduce costs and energy consumption when a SW is processed in multi-cloud. EQGSA-DPW considers multiple objectives (e.g., transmission bandwidth, cost and energy consumption of both service and communication) and improves the GSA algorithm by using the log-sigmoid transfer function as a gravitational constant G and updating agent position by quantum rotation angle amplitude for more diversification. Moreover, to assist EQGSA-DPW in finding the optima, an initial guess is proposed. The performance of our EQGSA-DPW algorithm is evaluated via extensive experiments, which show that our data placement method achieves significantly better performance in terms of cost, energy, and data transfer than competing algorithms. For instance, in terms of energy consumption, EQGSA-DPW can on average achieve up to \(25\%\), \(14\%\), and \(40\%\) reduction over that of GSA, PSO, and ACO-DPDGW algorithms, respectively. As for the storage services cost, EQGSA-DPW values are the lowest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1