Moegamat Wafeeq Davids, Tayla Chirie Martin, Pavel V Fursikov, Mikhail V Zhidkov, Igor I Khodos, Simbarashe Fashu and Mykhaylo V Lototskyy
{"title":"制备路线对多组分 AB2 型储氢合金性能的影响","authors":"Moegamat Wafeeq Davids, Tayla Chirie Martin, Pavel V Fursikov, Mikhail V Zhidkov, Igor I Khodos, Simbarashe Fashu and Mykhaylo V Lototskyy","doi":"10.1088/2515-7655/ad5abe","DOIUrl":null,"url":null,"abstract":"This article presents experimental results on the preparation and characterisation of a multi-component AB2–type intermetallic hydrogen storage alloy (A = Ti0.85Zr0.15, B = Mn1.22Ni0.22Cr0.2V0.3Fe0.06). The alloy samples were prepared by induction melting using Y2O3-lined alumo-silica and graphite crucibles. The characterisation results were compared with the ones for the reference sample of the same composition prepared by arc melting. It has been shown that the induction-melted samples exhibit reduced hydrogen sorption capacities and sloping plateaux on the pressure composition isotherms (PCI’s). The origin of the observed effects has been shown to be in the inhomogeneity of the induction-melted alloys and their contamination due to crucible—melt interaction, particularly pronounced for the alloy melted in the alumo-silica crucible; this alloy was additionally characterised by the decrease of Zr/Ti ratio and, in turn, higher plateau pressures of the PCI’s.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"343 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of preparation routes on the performance of a multi-component AB2-type hydrogen storage alloy\",\"authors\":\"Moegamat Wafeeq Davids, Tayla Chirie Martin, Pavel V Fursikov, Mikhail V Zhidkov, Igor I Khodos, Simbarashe Fashu and Mykhaylo V Lototskyy\",\"doi\":\"10.1088/2515-7655/ad5abe\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents experimental results on the preparation and characterisation of a multi-component AB2–type intermetallic hydrogen storage alloy (A = Ti0.85Zr0.15, B = Mn1.22Ni0.22Cr0.2V0.3Fe0.06). The alloy samples were prepared by induction melting using Y2O3-lined alumo-silica and graphite crucibles. The characterisation results were compared with the ones for the reference sample of the same composition prepared by arc melting. It has been shown that the induction-melted samples exhibit reduced hydrogen sorption capacities and sloping plateaux on the pressure composition isotherms (PCI’s). The origin of the observed effects has been shown to be in the inhomogeneity of the induction-melted alloys and their contamination due to crucible—melt interaction, particularly pronounced for the alloy melted in the alumo-silica crucible; this alloy was additionally characterised by the decrease of Zr/Ti ratio and, in turn, higher plateau pressures of the PCI’s.\",\"PeriodicalId\":48500,\"journal\":{\"name\":\"Journal of Physics-Energy\",\"volume\":\"343 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics-Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7655/ad5abe\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad5abe","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effect of preparation routes on the performance of a multi-component AB2-type hydrogen storage alloy
This article presents experimental results on the preparation and characterisation of a multi-component AB2–type intermetallic hydrogen storage alloy (A = Ti0.85Zr0.15, B = Mn1.22Ni0.22Cr0.2V0.3Fe0.06). The alloy samples were prepared by induction melting using Y2O3-lined alumo-silica and graphite crucibles. The characterisation results were compared with the ones for the reference sample of the same composition prepared by arc melting. It has been shown that the induction-melted samples exhibit reduced hydrogen sorption capacities and sloping plateaux on the pressure composition isotherms (PCI’s). The origin of the observed effects has been shown to be in the inhomogeneity of the induction-melted alloys and their contamination due to crucible—melt interaction, particularly pronounced for the alloy melted in the alumo-silica crucible; this alloy was additionally characterised by the decrease of Zr/Ti ratio and, in turn, higher plateau pressures of the PCI’s.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.