{"title":"考虑时变扰动的液压伺服系统的有限时间非矢量终端协同控制","authors":"Xin Zhou, Zhangbao Xu, Xu Yang","doi":"10.1177/09596518241256016","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel control strategy combining a hybrid nonlinear disturbance observer with a finite-time synergistic control approach for hydraulic servo systems, focusing on compensating time-varying disturbances and suppresses chattering. Recognizing the critical challenges posed by these disturbances and the chattering phenomenon in hydraulic servo systems, our work offers significant advancements in enhancing system robustness and control precision. Through meticulous classification and handling of matched and unmatched disturbances, the study unveils a dual-channel finite-time disturbance observer capable of simultaneously addressing both disturbance types with high accuracy, particularly focusing on the often overlooked and challenging to observe friction effects. Key contributions include the pioneering integration of cooperative control theory with sliding mode control, employing fractional-order terms to minimize chattering, thereby improving system stability. The experimental evaluation underlines the proposed controller’s superior performance over traditional control strategies, including PID, TSMC, and SMC, under both low and high-frequency operational conditions. Notably, the proposed FTNTSC controller demonstrates exceptional robustness and effectiveness, with significantly lower performance degradation when transitioning from low to high-frequency conditions compared to its counterparts.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"9 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite time non-singular terminal synergistic control of hydraulic servo system considering time-varying disturbance\",\"authors\":\"Xin Zhou, Zhangbao Xu, Xu Yang\",\"doi\":\"10.1177/09596518241256016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel control strategy combining a hybrid nonlinear disturbance observer with a finite-time synergistic control approach for hydraulic servo systems, focusing on compensating time-varying disturbances and suppresses chattering. Recognizing the critical challenges posed by these disturbances and the chattering phenomenon in hydraulic servo systems, our work offers significant advancements in enhancing system robustness and control precision. Through meticulous classification and handling of matched and unmatched disturbances, the study unveils a dual-channel finite-time disturbance observer capable of simultaneously addressing both disturbance types with high accuracy, particularly focusing on the often overlooked and challenging to observe friction effects. Key contributions include the pioneering integration of cooperative control theory with sliding mode control, employing fractional-order terms to minimize chattering, thereby improving system stability. The experimental evaluation underlines the proposed controller’s superior performance over traditional control strategies, including PID, TSMC, and SMC, under both low and high-frequency operational conditions. Notably, the proposed FTNTSC controller demonstrates exceptional robustness and effectiveness, with significantly lower performance degradation when transitioning from low to high-frequency conditions compared to its counterparts.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518241256016\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/09596518241256016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Finite time non-singular terminal synergistic control of hydraulic servo system considering time-varying disturbance
This paper introduces a novel control strategy combining a hybrid nonlinear disturbance observer with a finite-time synergistic control approach for hydraulic servo systems, focusing on compensating time-varying disturbances and suppresses chattering. Recognizing the critical challenges posed by these disturbances and the chattering phenomenon in hydraulic servo systems, our work offers significant advancements in enhancing system robustness and control precision. Through meticulous classification and handling of matched and unmatched disturbances, the study unveils a dual-channel finite-time disturbance observer capable of simultaneously addressing both disturbance types with high accuracy, particularly focusing on the often overlooked and challenging to observe friction effects. Key contributions include the pioneering integration of cooperative control theory with sliding mode control, employing fractional-order terms to minimize chattering, thereby improving system stability. The experimental evaluation underlines the proposed controller’s superior performance over traditional control strategies, including PID, TSMC, and SMC, under both low and high-frequency operational conditions. Notably, the proposed FTNTSC controller demonstrates exceptional robustness and effectiveness, with significantly lower performance degradation when transitioning from low to high-frequency conditions compared to its counterparts.
期刊介绍:
Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies.
"It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK
This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.