应用于导体表面的新应力张量方法

COMPEL Pub Date : 2024-06-26 DOI:10.1108/compel-10-2023-0543
Bojana Petkovć, Marek Ziolkowski, Hannes Toepfer, Jens Haueisen
{"title":"应用于导体表面的新应力张量方法","authors":"Bojana Petkovć, Marek Ziolkowski, Hannes Toepfer, Jens Haueisen","doi":"10.1108/compel-10-2023-0543","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to derive a new stress tensor for calculating the Lorentz force acting on an arbitrarily shaped nonmagnetic conductive specimen moving in the field of a permanent magnet. The stress tensor allows for a transition from a volume to a surface integral for force calculation.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This paper derives a new stress tensor which consists of two parts: the first part corresponds to the scaled Poynting vector and the second part corresponds to the velocity term. This paper converts the triple integral over the volume of the conductor to a double integral over its surface, where the subintegral functions are continuous through the different compartments of the model. Numerical results and comparison to the standard volume discretization using the finite element method are given.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>This paper evaluated the performance of the new stress tensor computation on a thick and thin cuboid, a thin disk, a sphere and a thin cuboid containing a surface defect. The integrals are valid for any geometry of the specimen and the position and orientation of the magnet. The normalized root mean square errors are below 0.26% with respect to a reference finite element solution applying volume integration.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Tensor elements are continuous throughout the model, allowing integration directly over the conductor surface.</p><!--/ Abstract__block -->","PeriodicalId":501376,"journal":{"name":"COMPEL","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new stress tensor approach for application to the conductor surface\",\"authors\":\"Bojana Petkovć, Marek Ziolkowski, Hannes Toepfer, Jens Haueisen\",\"doi\":\"10.1108/compel-10-2023-0543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this paper is to derive a new stress tensor for calculating the Lorentz force acting on an arbitrarily shaped nonmagnetic conductive specimen moving in the field of a permanent magnet. The stress tensor allows for a transition from a volume to a surface integral for force calculation.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This paper derives a new stress tensor which consists of two parts: the first part corresponds to the scaled Poynting vector and the second part corresponds to the velocity term. This paper converts the triple integral over the volume of the conductor to a double integral over its surface, where the subintegral functions are continuous through the different compartments of the model. Numerical results and comparison to the standard volume discretization using the finite element method are given.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>This paper evaluated the performance of the new stress tensor computation on a thick and thin cuboid, a thin disk, a sphere and a thin cuboid containing a surface defect. The integrals are valid for any geometry of the specimen and the position and orientation of the magnet. The normalized root mean square errors are below 0.26% with respect to a reference finite element solution applying volume integration.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Tensor elements are continuous throughout the model, allowing integration directly over the conductor surface.</p><!--/ Abstract__block -->\",\"PeriodicalId\":501376,\"journal\":{\"name\":\"COMPEL\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"COMPEL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/compel-10-2023-0543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"COMPEL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/compel-10-2023-0543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在推导出一种新的应力张量,用于计算作用在永磁体磁场中移动的任意形状非磁性导电试样上的洛伦兹力。本文推导出一种新的应力张量,它由两部分组成:第一部分对应于缩放的 Poynting 向量,第二部分对应于速度项。本文将导体体积上的三重积分转换为导体表面上的双重积分,其中的子积分函数在模型的不同区间内是连续的。本文给出了数值结果,并与使用有限元法进行的标准体积离散化进行了比较。研究结果 本文评估了新应力张量计算在厚薄立方体、薄圆盘、球体和含有表面缺陷的薄立方体上的性能。积分对试样的任何几何形状以及磁铁的位置和方向都有效。与采用体积积分的参考有限元解法相比,归一化均方根误差低于 0.26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new stress tensor approach for application to the conductor surface

Purpose

The purpose of this paper is to derive a new stress tensor for calculating the Lorentz force acting on an arbitrarily shaped nonmagnetic conductive specimen moving in the field of a permanent magnet. The stress tensor allows for a transition from a volume to a surface integral for force calculation.

Design/methodology/approach

This paper derives a new stress tensor which consists of two parts: the first part corresponds to the scaled Poynting vector and the second part corresponds to the velocity term. This paper converts the triple integral over the volume of the conductor to a double integral over its surface, where the subintegral functions are continuous through the different compartments of the model. Numerical results and comparison to the standard volume discretization using the finite element method are given.

Findings

This paper evaluated the performance of the new stress tensor computation on a thick and thin cuboid, a thin disk, a sphere and a thin cuboid containing a surface defect. The integrals are valid for any geometry of the specimen and the position and orientation of the magnet. The normalized root mean square errors are below 0.26% with respect to a reference finite element solution applying volume integration.

Originality/value

Tensor elements are continuous throughout the model, allowing integration directly over the conductor surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying the parameters of ultracapacitors based on variable forgetting factor recursive least square A compound reconfigurable series-fed microstrip antenna for satellite communication applications On-load magnetic field calculation for linear permanent-magnet actuators using hybrid 2-D finite-element method and Maxwell–Fourier analysis Design and analysis of double-permanent-magnet enhanced hybrid stepping machine with tangential and radial magnetization Dynamic J-A model improved by waveform scale parameters and R-L type fractional derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1