M. E. Charó-Alvarado, M. A. Charó-Alonso, J. F. Toro-Vazquez
{"title":"植物油和矿物油中饱和单甘酯二元混合物的状态图及其对油凝胶流变学的影响","authors":"M. E. Charó-Alvarado, M. A. Charó-Alonso, J. F. Toro-Vazquez","doi":"10.1007/s11483-024-09847-5","DOIUrl":null,"url":null,"abstract":"<div><p>State diagrams of binary mixtures of 1-stearoyl glycerol (C18) with 1-myristoyl glycerol (C14), 1-palmitoyl glycerol (C16) or 1-monobehenin glycerol (C22) in vegetable and mineral oil were obtained using different molar fractions of the monoglycerides (MGs) keeping the MG concentration constant (8% wt/wt). We observed that, independent of the MG mixture (C18:C14, C18:C16, C18:C22) and the type of oil, the MGs developed a mixed Lα phase with a transition temperature practically independent of the C18 molar fraction. In contrast, the transition temperature for the sub-α phase showed a eutectic point that, for the same MG mixture, occurred in both oils at the same MG molar fraction. At the MG molar composition corresponding to the eutectic point, the difference in length between the aliphatic chains in the mixed lamella resulted in a sub-α phase with the least efficient chain packing compared to that developed by any other MG molar fraction. Independent of the MG mixture and the type of oil, the oleogels developed by cooling (80 °C to 5 °C) followed by 180 min at 5 °C achieved the highest elasticity (<i>G’</i><sub><i>5 °C</i></sub>) at the MG molar fraction composition associated with the eutectic point. Tentatively the least efficient aliphatic chains packing developed by the sub-α phase at the eutectic point, favored the incorporation and retention of higher amounts of oil. Thus, for a particular MG binary mixture, the oleogels at the eutectic point had the highest <i>G’</i><sub><i>5 °C</i></sub> in comparison with the <i>G’</i><sub><i>5 °C</i></sub> of oleogels formulated at any other MG proportion.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 3","pages":"535 - 552"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Diagrams of Binary Mixtures of Saturated Monoglycerides in Vegetable and Mineral Oil and their Impact in the Oleogels Rheology\",\"authors\":\"M. E. Charó-Alvarado, M. A. Charó-Alonso, J. F. Toro-Vazquez\",\"doi\":\"10.1007/s11483-024-09847-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>State diagrams of binary mixtures of 1-stearoyl glycerol (C18) with 1-myristoyl glycerol (C14), 1-palmitoyl glycerol (C16) or 1-monobehenin glycerol (C22) in vegetable and mineral oil were obtained using different molar fractions of the monoglycerides (MGs) keeping the MG concentration constant (8% wt/wt). We observed that, independent of the MG mixture (C18:C14, C18:C16, C18:C22) and the type of oil, the MGs developed a mixed Lα phase with a transition temperature practically independent of the C18 molar fraction. In contrast, the transition temperature for the sub-α phase showed a eutectic point that, for the same MG mixture, occurred in both oils at the same MG molar fraction. At the MG molar composition corresponding to the eutectic point, the difference in length between the aliphatic chains in the mixed lamella resulted in a sub-α phase with the least efficient chain packing compared to that developed by any other MG molar fraction. Independent of the MG mixture and the type of oil, the oleogels developed by cooling (80 °C to 5 °C) followed by 180 min at 5 °C achieved the highest elasticity (<i>G’</i><sub><i>5 °C</i></sub>) at the MG molar fraction composition associated with the eutectic point. Tentatively the least efficient aliphatic chains packing developed by the sub-α phase at the eutectic point, favored the incorporation and retention of higher amounts of oil. Thus, for a particular MG binary mixture, the oleogels at the eutectic point had the highest <i>G’</i><sub><i>5 °C</i></sub> in comparison with the <i>G’</i><sub><i>5 °C</i></sub> of oleogels formulated at any other MG proportion.</p></div>\",\"PeriodicalId\":564,\"journal\":{\"name\":\"Food Biophysics\",\"volume\":\"19 3\",\"pages\":\"535 - 552\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11483-024-09847-5\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09847-5","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
State Diagrams of Binary Mixtures of Saturated Monoglycerides in Vegetable and Mineral Oil and their Impact in the Oleogels Rheology
State diagrams of binary mixtures of 1-stearoyl glycerol (C18) with 1-myristoyl glycerol (C14), 1-palmitoyl glycerol (C16) or 1-monobehenin glycerol (C22) in vegetable and mineral oil were obtained using different molar fractions of the monoglycerides (MGs) keeping the MG concentration constant (8% wt/wt). We observed that, independent of the MG mixture (C18:C14, C18:C16, C18:C22) and the type of oil, the MGs developed a mixed Lα phase with a transition temperature practically independent of the C18 molar fraction. In contrast, the transition temperature for the sub-α phase showed a eutectic point that, for the same MG mixture, occurred in both oils at the same MG molar fraction. At the MG molar composition corresponding to the eutectic point, the difference in length between the aliphatic chains in the mixed lamella resulted in a sub-α phase with the least efficient chain packing compared to that developed by any other MG molar fraction. Independent of the MG mixture and the type of oil, the oleogels developed by cooling (80 °C to 5 °C) followed by 180 min at 5 °C achieved the highest elasticity (G’5 °C) at the MG molar fraction composition associated with the eutectic point. Tentatively the least efficient aliphatic chains packing developed by the sub-α phase at the eutectic point, favored the incorporation and retention of higher amounts of oil. Thus, for a particular MG binary mixture, the oleogels at the eutectic point had the highest G’5 °C in comparison with the G’5 °C of oleogels formulated at any other MG proportion.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.