{"title":"悬停飞行中微型拍翼旋转翼的气动优化","authors":"Luyao Wang, Yan Qing Wang","doi":"10.1007/s00707-024-03996-x","DOIUrl":null,"url":null,"abstract":"<div><p>The aerodynamic characteristics of flapping rotary wings (FRWs) have received considerable attention in design. In this study, optimizations of aerodynamic performance and kinematics of FRWs over the parameter space are explored. A well-validated Quasi-Steady model is employed to estimate the aerodynamic characteristics of FRWs in hovering flight, and a genetic algorithm is utilized for optimizing. It is assumed that flapping and pitching motion are given by motion parameters actively, while rotation is produced passively. Our results show that the optimal kinematic parameters are independent of flapping frequencies. The maximum lift comes from the high rotational speed caused by the small pitching amplitude, and the maximum power factor is from the large pitching amplitude. The dimensionless optimization of the flapping velocity as reference velocity is comparable to the dimensional results. The optimization model proposed in this study can be applied to the actual model for qualitative analysis. Rotational equilibrium power factor can reach more than 80% of the maximum value without rotation equilibrium constraint, but which rotational status can achieve the maximum power factor depends on the pitching angle at the mid-downstroke (<i>α</i><sub><i>d</i></sub>). This study is helpful for the kinematic parameter design and further research of FRWs.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"235 8","pages":"5357 - 5377"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic optimization of a micro flapping rotary wing in hovering flight\",\"authors\":\"Luyao Wang, Yan Qing Wang\",\"doi\":\"10.1007/s00707-024-03996-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aerodynamic characteristics of flapping rotary wings (FRWs) have received considerable attention in design. In this study, optimizations of aerodynamic performance and kinematics of FRWs over the parameter space are explored. A well-validated Quasi-Steady model is employed to estimate the aerodynamic characteristics of FRWs in hovering flight, and a genetic algorithm is utilized for optimizing. It is assumed that flapping and pitching motion are given by motion parameters actively, while rotation is produced passively. Our results show that the optimal kinematic parameters are independent of flapping frequencies. The maximum lift comes from the high rotational speed caused by the small pitching amplitude, and the maximum power factor is from the large pitching amplitude. The dimensionless optimization of the flapping velocity as reference velocity is comparable to the dimensional results. The optimization model proposed in this study can be applied to the actual model for qualitative analysis. Rotational equilibrium power factor can reach more than 80% of the maximum value without rotation equilibrium constraint, but which rotational status can achieve the maximum power factor depends on the pitching angle at the mid-downstroke (<i>α</i><sub><i>d</i></sub>). This study is helpful for the kinematic parameter design and further research of FRWs.</p></div>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"235 8\",\"pages\":\"5357 - 5377\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00707-024-03996-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-03996-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Aerodynamic optimization of a micro flapping rotary wing in hovering flight
The aerodynamic characteristics of flapping rotary wings (FRWs) have received considerable attention in design. In this study, optimizations of aerodynamic performance and kinematics of FRWs over the parameter space are explored. A well-validated Quasi-Steady model is employed to estimate the aerodynamic characteristics of FRWs in hovering flight, and a genetic algorithm is utilized for optimizing. It is assumed that flapping and pitching motion are given by motion parameters actively, while rotation is produced passively. Our results show that the optimal kinematic parameters are independent of flapping frequencies. The maximum lift comes from the high rotational speed caused by the small pitching amplitude, and the maximum power factor is from the large pitching amplitude. The dimensionless optimization of the flapping velocity as reference velocity is comparable to the dimensional results. The optimization model proposed in this study can be applied to the actual model for qualitative analysis. Rotational equilibrium power factor can reach more than 80% of the maximum value without rotation equilibrium constraint, but which rotational status can achieve the maximum power factor depends on the pitching angle at the mid-downstroke (αd). This study is helpful for the kinematic parameter design and further research of FRWs.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.