{"title":"与 2020 年 6 月 14 日印度古吉拉特邦卡奇地区地震(M = 5.3)有关的超低频地磁异常现象","authors":"C. P. Simha, K. M. Rao","doi":"10.1134/s001685212470016x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Gujarat region (India) was struck by an earthquake of magnitude 5.3 on June 14, 2020 at 14:43 UTC near Bhachau city in Kachchh district in the state of Gujarat, with a depth of 20 km at the epicentre of 23.38° N, 70.36° E. In order to study the earthquake precursors for this event, data from the Induction Coil Magnetometer (LEMI-30) installed at the Badargadh Multi-Parameter Geophysical Observatory (MPGO) was analyzed for the period from January 1 to June 16, 2020. This station is located ~20 km from the epicentre of this earthquake. We observed that a clear geomagnetic burst was identified in the raw data of the B<sub>x</sub> and B<sub>y</sub> components in the LEMI-30 data before this earthquake. Geomagnetic amplitude bursts were identified 6 to 18 days and 2 days before this earthquake with a frequency of 0.01 to 0.02 Hz. Polarization ratio (PR) analysis revealed an anomalous signal on June 11, 2020 with PR values increasing to 1.4. The planetary index (K<sub>p</sub>) and disturbance storm time index (D<sub>st</sub>) due to the Sun‒Earth interaction are also very low (K<sub>p</sub> = 0.3 and D<sub>st</sub> = –6 nT) from June 10 to 16, 2020. In order to understand the dynamics of seismic processes, fractal dimensional analysis is also applied to magnetic data. Fractal dimension values also corroborate with the results of PR analysis, which showed a similar anomaly on June 11, 2020. The ULF geomagnetic data was further analyzed by applying the band-pass filtered data instead of the raw data in the period range from 10 to 45 seconds and derived the Z/X amplitude ratio in the Pc3 band. We found an upward trend and a downward trend from June 10, 2020. Enhanced polarization ratios were detected in the reconstructed components using the EMD technique which are linked to the current earthquake. It has been clearly demonstrated that the EMD method can be used to isolate noise and thus improve the identification of simultaneous short-term geomagnetic variations/anomalies. Therefore, in our study, we have clearly differentiated their origin, whether external (the Sun‒Earth interactions) or internal (local changes in conductivity in the area of the preparation).</p>","PeriodicalId":55097,"journal":{"name":"Geotectonics","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous ULF Geomagnetic Anomalies Associated with the June 14, 2020 Earthquake (M = 5.3) in Kachchh, Gujarat Region (India)\",\"authors\":\"C. P. Simha, K. M. Rao\",\"doi\":\"10.1134/s001685212470016x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Gujarat region (India) was struck by an earthquake of magnitude 5.3 on June 14, 2020 at 14:43 UTC near Bhachau city in Kachchh district in the state of Gujarat, with a depth of 20 km at the epicentre of 23.38° N, 70.36° E. In order to study the earthquake precursors for this event, data from the Induction Coil Magnetometer (LEMI-30) installed at the Badargadh Multi-Parameter Geophysical Observatory (MPGO) was analyzed for the period from January 1 to June 16, 2020. This station is located ~20 km from the epicentre of this earthquake. We observed that a clear geomagnetic burst was identified in the raw data of the B<sub>x</sub> and B<sub>y</sub> components in the LEMI-30 data before this earthquake. Geomagnetic amplitude bursts were identified 6 to 18 days and 2 days before this earthquake with a frequency of 0.01 to 0.02 Hz. Polarization ratio (PR) analysis revealed an anomalous signal on June 11, 2020 with PR values increasing to 1.4. The planetary index (K<sub>p</sub>) and disturbance storm time index (D<sub>st</sub>) due to the Sun‒Earth interaction are also very low (K<sub>p</sub> = 0.3 and D<sub>st</sub> = –6 nT) from June 10 to 16, 2020. In order to understand the dynamics of seismic processes, fractal dimensional analysis is also applied to magnetic data. Fractal dimension values also corroborate with the results of PR analysis, which showed a similar anomaly on June 11, 2020. The ULF geomagnetic data was further analyzed by applying the band-pass filtered data instead of the raw data in the period range from 10 to 45 seconds and derived the Z/X amplitude ratio in the Pc3 band. We found an upward trend and a downward trend from June 10, 2020. Enhanced polarization ratios were detected in the reconstructed components using the EMD technique which are linked to the current earthquake. It has been clearly demonstrated that the EMD method can be used to isolate noise and thus improve the identification of simultaneous short-term geomagnetic variations/anomalies. Therefore, in our study, we have clearly differentiated their origin, whether external (the Sun‒Earth interactions) or internal (local changes in conductivity in the area of the preparation).</p>\",\"PeriodicalId\":55097,\"journal\":{\"name\":\"Geotectonics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotectonics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s001685212470016x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s001685212470016x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Anomalous ULF Geomagnetic Anomalies Associated with the June 14, 2020 Earthquake (M = 5.3) in Kachchh, Gujarat Region (India)
Abstract
Gujarat region (India) was struck by an earthquake of magnitude 5.3 on June 14, 2020 at 14:43 UTC near Bhachau city in Kachchh district in the state of Gujarat, with a depth of 20 km at the epicentre of 23.38° N, 70.36° E. In order to study the earthquake precursors for this event, data from the Induction Coil Magnetometer (LEMI-30) installed at the Badargadh Multi-Parameter Geophysical Observatory (MPGO) was analyzed for the period from January 1 to June 16, 2020. This station is located ~20 km from the epicentre of this earthquake. We observed that a clear geomagnetic burst was identified in the raw data of the Bx and By components in the LEMI-30 data before this earthquake. Geomagnetic amplitude bursts were identified 6 to 18 days and 2 days before this earthquake with a frequency of 0.01 to 0.02 Hz. Polarization ratio (PR) analysis revealed an anomalous signal on June 11, 2020 with PR values increasing to 1.4. The planetary index (Kp) and disturbance storm time index (Dst) due to the Sun‒Earth interaction are also very low (Kp = 0.3 and Dst = –6 nT) from June 10 to 16, 2020. In order to understand the dynamics of seismic processes, fractal dimensional analysis is also applied to magnetic data. Fractal dimension values also corroborate with the results of PR analysis, which showed a similar anomaly on June 11, 2020. The ULF geomagnetic data was further analyzed by applying the band-pass filtered data instead of the raw data in the period range from 10 to 45 seconds and derived the Z/X amplitude ratio in the Pc3 band. We found an upward trend and a downward trend from June 10, 2020. Enhanced polarization ratios were detected in the reconstructed components using the EMD technique which are linked to the current earthquake. It has been clearly demonstrated that the EMD method can be used to isolate noise and thus improve the identification of simultaneous short-term geomagnetic variations/anomalies. Therefore, in our study, we have clearly differentiated their origin, whether external (the Sun‒Earth interactions) or internal (local changes in conductivity in the area of the preparation).
期刊介绍:
Geotectonics publishes articles on general and regional tectonics, structural geology, geodynamics, and experimental tectonics and considers the relation of tectonics to the deep structure of the earth, magmatism, metamorphism, and mineral resources.