{"title":"并行空间聚类算法数据分布策略调查与实验综述","authors":"Jagat Sesh Challa, Navneet Goyal, Amogh Sharma, Nikhil Sreekumar, Sundar Balasubramaniam, Poonam Goyal","doi":"10.1007/s11390-024-2700-0","DOIUrl":null,"url":null,"abstract":"<p>The advent of Big Data has led to the rapid growth in the usage of parallel clustering algorithms that work over distributed computing frameworks such as MPI, MapReduce, and Spark. An important step for any parallel clustering algorithm is the distribution of data amongst the cluster nodes. This step governs the methodology and performance of the entire algorithm. Researchers typically use random, or a spatial/geometric distribution strategy like <i>kd</i>-tree based partitioning and grid-based partitioning, as per the requirements of the algorithm. However, these strategies are generic and are not tailor-made for any specific parallel clustering algorithm. In this paper, we give a very comprehensive literature survey of MPI-based parallel clustering algorithms with special reference to the specific data distribution strategies they employ. We also propose three new data distribution strategies namely Parameterized Dimensional Split for parallel density-based clustering algorithms like DBSCAN and OPTICS, Cell-Based Dimensional Split for dGridSLINK, which is a grid-based hierarchical clustering algorithm that exhibits efficiency for disjoint spatial distribution, and Projection-Based Split, which is a generic distribution strategy. All of these preserve spatial locality, achieve disjoint partitioning, and ensure good data load balancing. The experimental analysis shows the benefits of using the proposed data distribution strategies for algorithms they are designed for, based on which we give appropriate recommendations for their usage.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"16 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey and Experimental Review on Data Distribution Strategies for Parallel Spatial Clustering Algorithms\",\"authors\":\"Jagat Sesh Challa, Navneet Goyal, Amogh Sharma, Nikhil Sreekumar, Sundar Balasubramaniam, Poonam Goyal\",\"doi\":\"10.1007/s11390-024-2700-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advent of Big Data has led to the rapid growth in the usage of parallel clustering algorithms that work over distributed computing frameworks such as MPI, MapReduce, and Spark. An important step for any parallel clustering algorithm is the distribution of data amongst the cluster nodes. This step governs the methodology and performance of the entire algorithm. Researchers typically use random, or a spatial/geometric distribution strategy like <i>kd</i>-tree based partitioning and grid-based partitioning, as per the requirements of the algorithm. However, these strategies are generic and are not tailor-made for any specific parallel clustering algorithm. In this paper, we give a very comprehensive literature survey of MPI-based parallel clustering algorithms with special reference to the specific data distribution strategies they employ. We also propose three new data distribution strategies namely Parameterized Dimensional Split for parallel density-based clustering algorithms like DBSCAN and OPTICS, Cell-Based Dimensional Split for dGridSLINK, which is a grid-based hierarchical clustering algorithm that exhibits efficiency for disjoint spatial distribution, and Projection-Based Split, which is a generic distribution strategy. All of these preserve spatial locality, achieve disjoint partitioning, and ensure good data load balancing. The experimental analysis shows the benefits of using the proposed data distribution strategies for algorithms they are designed for, based on which we give appropriate recommendations for their usage.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-024-2700-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-024-2700-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Survey and Experimental Review on Data Distribution Strategies for Parallel Spatial Clustering Algorithms
The advent of Big Data has led to the rapid growth in the usage of parallel clustering algorithms that work over distributed computing frameworks such as MPI, MapReduce, and Spark. An important step for any parallel clustering algorithm is the distribution of data amongst the cluster nodes. This step governs the methodology and performance of the entire algorithm. Researchers typically use random, or a spatial/geometric distribution strategy like kd-tree based partitioning and grid-based partitioning, as per the requirements of the algorithm. However, these strategies are generic and are not tailor-made for any specific parallel clustering algorithm. In this paper, we give a very comprehensive literature survey of MPI-based parallel clustering algorithms with special reference to the specific data distribution strategies they employ. We also propose three new data distribution strategies namely Parameterized Dimensional Split for parallel density-based clustering algorithms like DBSCAN and OPTICS, Cell-Based Dimensional Split for dGridSLINK, which is a grid-based hierarchical clustering algorithm that exhibits efficiency for disjoint spatial distribution, and Projection-Based Split, which is a generic distribution strategy. All of these preserve spatial locality, achieve disjoint partitioning, and ensure good data load balancing. The experimental analysis shows the benefits of using the proposed data distribution strategies for algorithms they are designed for, based on which we give appropriate recommendations for their usage.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas