改进全球导航卫星系统的机器学习技术概览

IF 1.9 4区 工程技术 Q2 Engineering EURASIP Journal on Advances in Signal Processing Pub Date : 2024-06-28 DOI:10.1186/s13634-024-01167-7
Adyasha Mohanty, Grace Gao
{"title":"改进全球导航卫星系统的机器学习技术概览","authors":"Adyasha Mohanty, Grace Gao","doi":"10.1186/s13634-024-01167-7","DOIUrl":null,"url":null,"abstract":"<p>Global Navigation Satellite Systems (GNSS)-based positioning plays a crucial role in various applications, including navigation, transportation, logistics, mapping, and emergency services. Traditional GNSS positioning methods are model-based, utilizing satellite geometry and the known properties of satellite signals. However, model-based methods have limitations in challenging environments and often lack adaptability to uncertain noise models. This paper highlights recent advances in machine learning (ML) and its potential to address these limitations. It covers a broad range of ML methods, including supervised learning, unsupervised learning, deep learning, and hybrid approaches. The survey provides insights into positioning applications related to GNSS, such as signal analysis, anomaly detection, multi-sensor integration, prediction, and accuracy enhancement using ML. It discusses the strengths, limitations, and challenges of current ML-based approaches for GNSS positioning, providing a comprehensive overview of the field.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"9 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey of machine learning techniques for improving Global Navigation Satellite Systems\",\"authors\":\"Adyasha Mohanty, Grace Gao\",\"doi\":\"10.1186/s13634-024-01167-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global Navigation Satellite Systems (GNSS)-based positioning plays a crucial role in various applications, including navigation, transportation, logistics, mapping, and emergency services. Traditional GNSS positioning methods are model-based, utilizing satellite geometry and the known properties of satellite signals. However, model-based methods have limitations in challenging environments and often lack adaptability to uncertain noise models. This paper highlights recent advances in machine learning (ML) and its potential to address these limitations. It covers a broad range of ML methods, including supervised learning, unsupervised learning, deep learning, and hybrid approaches. The survey provides insights into positioning applications related to GNSS, such as signal analysis, anomaly detection, multi-sensor integration, prediction, and accuracy enhancement using ML. It discusses the strengths, limitations, and challenges of current ML-based approaches for GNSS positioning, providing a comprehensive overview of the field.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01167-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01167-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

基于全球导航卫星系统(GNSS)的定位在导航、运输、物流、制图和应急服务等各种应用中发挥着至关重要的作用。传统的全球导航卫星系统定位方法基于模型,利用卫星几何形状和卫星信号的已知特性。然而,基于模型的方法在具有挑战性的环境中存在局限性,而且往往缺乏对不确定噪声模型的适应性。本文重点介绍了机器学习(ML)的最新进展及其解决这些局限性的潜力。它涵盖了广泛的 ML 方法,包括监督学习、无监督学习、深度学习和混合方法。调查深入探讨了与全球导航卫星系统有关的定位应用,如信号分析、异常检测、多传感器集成、预测以及使用 ML 提高精度。它讨论了当前基于 ML 的 GNSS 定位方法的优势、局限性和挑战,提供了该领域的全面概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey of machine learning techniques for improving Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS)-based positioning plays a crucial role in various applications, including navigation, transportation, logistics, mapping, and emergency services. Traditional GNSS positioning methods are model-based, utilizing satellite geometry and the known properties of satellite signals. However, model-based methods have limitations in challenging environments and often lack adaptability to uncertain noise models. This paper highlights recent advances in machine learning (ML) and its potential to address these limitations. It covers a broad range of ML methods, including supervised learning, unsupervised learning, deep learning, and hybrid approaches. The survey provides insights into positioning applications related to GNSS, such as signal analysis, anomaly detection, multi-sensor integration, prediction, and accuracy enhancement using ML. It discusses the strengths, limitations, and challenges of current ML-based approaches for GNSS positioning, providing a comprehensive overview of the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURASIP Journal on Advances in Signal Processing
EURASIP Journal on Advances in Signal Processing 工程技术-工程:电子与电气
CiteScore
3.50
自引率
10.50%
发文量
109
审稿时长
2.6 months
期刊介绍: The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.
期刊最新文献
Double-layer data-hiding mechanism for ECG signals Maximum radial pattern matching for minimum star map identification Optimized power and speed of Split-Radix, Radix-4 and Radix-2 FFT structures Performance analysis of unconstrained partitioned-block frequency-domain adaptive filters in under-modeling scenarios Maximum length binary sequences and spectral power distribution of periodic signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1