可批量生产的具有径向岛链结构的混合聚四氟乙烯纳米纤维毡作为个体防护中的抗病原织物

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Fiber Materials Pub Date : 2024-07-01 DOI:10.1007/s42765-024-00456-y
Bin Yu, Haiyan Shi, Xiangdong Han, Shuaiwei Wang, Ruiqi Sheng, Liujun Gu, Xiaoliang Liu, Ke Zhang, Tao Huang, Meifang Zhu, Hao Yu
{"title":"可批量生产的具有径向岛链结构的混合聚四氟乙烯纳米纤维毡作为个体防护中的抗病原织物","authors":"Bin Yu, Haiyan Shi, Xiangdong Han, Shuaiwei Wang, Ruiqi Sheng, Liujun Gu, Xiaoliang Liu, Ke Zhang, Tao Huang, Meifang Zhu, Hao Yu","doi":"10.1007/s42765-024-00456-y","DOIUrl":null,"url":null,"abstract":"<p>Developing an advanced individual protection cloth is a pivotal factor in combating global pathogen epidemics. However, formidable challenges are posed by the triangularity imbalance effect, necessitating the simultaneous fulfillment of requirements for high comfort, high safety, and mass production. In this study, a mass-producible hybrid polytetrafluoroethylene nanofiber mat (HPNFM) was developed by integrating technologies of organic–inorganic hybridization and membrane asynchronous stretching. Exceptional comfort was attained by conferring waterproofing and breathability attributes, achieved through the radial island-chain architecture exhibiting hydrophobicity and nanoporosity. Furthermore, through the incorporation of high-efficiency anti-pathogen nanoparticles, the HPNFM ensures high safety, demonstrating active antibacterial and antiviral effects. This is achieved through the synergistic effects of electrostatic induction and reactive oxygen species-based pathogen inactivation. More significantly, an HPNFM-based individual protective suit is designed and manufactured, which successfully encapsulates the advantages of high comfort, safety, and mass production, displaying competitiveness as a commercial product. Positioned as a viable strategy, this work holds substantial potential for practical applications in responding to future epidemics.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass-Producible Hybrid Polytetrafluoroethylene Nanofiber Mat with Radial Island-Chain Architecture as Anti-pathogen Cloth in Individual Protection\",\"authors\":\"Bin Yu, Haiyan Shi, Xiangdong Han, Shuaiwei Wang, Ruiqi Sheng, Liujun Gu, Xiaoliang Liu, Ke Zhang, Tao Huang, Meifang Zhu, Hao Yu\",\"doi\":\"10.1007/s42765-024-00456-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing an advanced individual protection cloth is a pivotal factor in combating global pathogen epidemics. However, formidable challenges are posed by the triangularity imbalance effect, necessitating the simultaneous fulfillment of requirements for high comfort, high safety, and mass production. In this study, a mass-producible hybrid polytetrafluoroethylene nanofiber mat (HPNFM) was developed by integrating technologies of organic–inorganic hybridization and membrane asynchronous stretching. Exceptional comfort was attained by conferring waterproofing and breathability attributes, achieved through the radial island-chain architecture exhibiting hydrophobicity and nanoporosity. Furthermore, through the incorporation of high-efficiency anti-pathogen nanoparticles, the HPNFM ensures high safety, demonstrating active antibacterial and antiviral effects. This is achieved through the synergistic effects of electrostatic induction and reactive oxygen species-based pathogen inactivation. More significantly, an HPNFM-based individual protective suit is designed and manufactured, which successfully encapsulates the advantages of high comfort, safety, and mass production, displaying competitiveness as a commercial product. Positioned as a viable strategy, this work holds substantial potential for practical applications in responding to future epidemics.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42765-024-00456-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42765-024-00456-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发先进的个体防护服是应对全球病原体流行的关键因素。然而,三角不平衡效应带来了严峻的挑战,必须同时满足高舒适性、高安全性和大规模生产的要求。在这项研究中,通过整合有机-无机杂化和膜异步拉伸技术,开发出了一种可大规模生产的混合聚四氟乙烯纳米纤维垫(HPNFM)。通过具有疏水性和纳米多孔性的径向岛链结构,该产品具有防水和透气特性,从而实现了超凡的舒适性。此外,通过加入高效抗病原纳米粒子,HPNFM 还具有积极的抗菌和抗病毒作用,确保了高度安全性。这是通过静电诱导和基于活性氧的病原体灭活的协同效应实现的。更重要的是,我们设计并制造了一种基于 HPNFM 的个体防护服,它成功地融合了高舒适性、安全性和大规模生产的优势,显示出作为商业产品的竞争力。这项工作被定位为一种可行的战略,在应对未来流行病的实际应用中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mass-Producible Hybrid Polytetrafluoroethylene Nanofiber Mat with Radial Island-Chain Architecture as Anti-pathogen Cloth in Individual Protection

Developing an advanced individual protection cloth is a pivotal factor in combating global pathogen epidemics. However, formidable challenges are posed by the triangularity imbalance effect, necessitating the simultaneous fulfillment of requirements for high comfort, high safety, and mass production. In this study, a mass-producible hybrid polytetrafluoroethylene nanofiber mat (HPNFM) was developed by integrating technologies of organic–inorganic hybridization and membrane asynchronous stretching. Exceptional comfort was attained by conferring waterproofing and breathability attributes, achieved through the radial island-chain architecture exhibiting hydrophobicity and nanoporosity. Furthermore, through the incorporation of high-efficiency anti-pathogen nanoparticles, the HPNFM ensures high safety, demonstrating active antibacterial and antiviral effects. This is achieved through the synergistic effects of electrostatic induction and reactive oxygen species-based pathogen inactivation. More significantly, an HPNFM-based individual protective suit is designed and manufactured, which successfully encapsulates the advantages of high comfort, safety, and mass production, displaying competitiveness as a commercial product. Positioned as a viable strategy, this work holds substantial potential for practical applications in responding to future epidemics.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
期刊最新文献
Bioactive Glass-Reinforced Hybrid Microfibrous Spheres Promote Bone Defect Repair via Stem Cell Delivery Fiber/Yarn and Textile-Based Piezoresistive Pressure Sensors ACAn Energy-Autonomous Wearable Fabric Powered by High-Power Density Sweat-Activated Batteries for Health Monitoring Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy Fiber Science at Xinjiang University: A Special Issue Dedicated to Centennial Celebration of Xinjiang University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1