用于多功能可穿戴传感器的二维 MoS2 螺旋液晶纤维

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Fiber Materials Pub Date : 2024-06-26 DOI:10.1007/s42765-024-00450-4
Jun Hyun Park, Jang Hwan Kim, Su Eon Lee, Hyokyeong Kim, Heo Yeon Lim, Ji Sung Park, Taeyeong Yun, Jinyong Lee, Simon Kim, Ho Jun Jin, Kyeong Jun Park, Heemin Kang, Hoe Joon Kim, Hyeong Min Jin, Jiwoong Kim, Sang Ouk Kim, Bong Hoon Kim
{"title":"用于多功能可穿戴传感器的二维 MoS2 螺旋液晶纤维","authors":"Jun Hyun Park, Jang Hwan Kim, Su Eon Lee, Hyokyeong Kim, Heo Yeon Lim, Ji Sung Park, Taeyeong Yun, Jinyong Lee, Simon Kim, Ho Jun Jin, Kyeong Jun Park, Heemin Kang, Hoe Joon Kim, Hyeong Min Jin, Jiwoong Kim, Sang Ouk Kim, Bong Hoon Kim","doi":"10.1007/s42765-024-00450-4","DOIUrl":null,"url":null,"abstract":"<p>Fiber-based material systems are emerging as key elements for next-generation wearable devices due to their remarkable advantages, including large mechanical deformability, breathability, and high durability. Recently, greatly improved mechanical stability has been established in functional fiber systems by introducing atomic-thick two-dimensional (2D) materials. Further development of intelligent fibers that can respond to various external stimuli is strongly needed for versatile applications. In this work, helical-shaped semiconductive fibers capable of multifunctional sensing are obtained by wet-spinning MoS<sub>2</sub> liquid crystal (LC) dispersions. The mechanical properties of the MoS<sub>2</sub> fibers were improved by exploiting high-purity LC dispersions consisting of uniformly-sized MoS<sub>2</sub> nanoflakes. Notably, three-dimensional (3D) helical fibers with structural chirality were successfully constructed by controlling the wet-spinning process parameters. The helical fibers exhibited multifunctional sensing characteristics, including (1) photodetection, (2) pH monitoring, (3) gas detection, and (4) 3D strain sensing. 2D materials with semiconducting properties as well as abundant surface reactive sites enable smart multifunctionalities in one-dimensional (1D) and helical fiber geometry, which is potentially useful for diverse applications such as wearable internet of things (IoT) devices and soft robotics.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D MoS2 Helical Liquid Crystalline Fibers for Multifunctional Wearable Sensors\",\"authors\":\"Jun Hyun Park, Jang Hwan Kim, Su Eon Lee, Hyokyeong Kim, Heo Yeon Lim, Ji Sung Park, Taeyeong Yun, Jinyong Lee, Simon Kim, Ho Jun Jin, Kyeong Jun Park, Heemin Kang, Hoe Joon Kim, Hyeong Min Jin, Jiwoong Kim, Sang Ouk Kim, Bong Hoon Kim\",\"doi\":\"10.1007/s42765-024-00450-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fiber-based material systems are emerging as key elements for next-generation wearable devices due to their remarkable advantages, including large mechanical deformability, breathability, and high durability. Recently, greatly improved mechanical stability has been established in functional fiber systems by introducing atomic-thick two-dimensional (2D) materials. Further development of intelligent fibers that can respond to various external stimuli is strongly needed for versatile applications. In this work, helical-shaped semiconductive fibers capable of multifunctional sensing are obtained by wet-spinning MoS<sub>2</sub> liquid crystal (LC) dispersions. The mechanical properties of the MoS<sub>2</sub> fibers were improved by exploiting high-purity LC dispersions consisting of uniformly-sized MoS<sub>2</sub> nanoflakes. Notably, three-dimensional (3D) helical fibers with structural chirality were successfully constructed by controlling the wet-spinning process parameters. The helical fibers exhibited multifunctional sensing characteristics, including (1) photodetection, (2) pH monitoring, (3) gas detection, and (4) 3D strain sensing. 2D materials with semiconducting properties as well as abundant surface reactive sites enable smart multifunctionalities in one-dimensional (1D) and helical fiber geometry, which is potentially useful for diverse applications such as wearable internet of things (IoT) devices and soft robotics.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42765-024-00450-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42765-024-00450-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纤维材料系统具有机械变形性大、透气性好和耐用性强等显著优点,正在成为下一代可穿戴设备的关键要素。最近,通过引入原子厚的二维(2D)材料,功能纤维系统的机械稳定性得到了极大改善。为了实现多功能应用,亟需进一步开发能对各种外部刺激做出响应的智能纤维。在这项工作中,通过湿法纺丝 MoS2 液晶(LC)分散体获得了能够进行多功能传感的螺旋形半导体纤维。通过利用由大小均匀的 MoS2 纳米片组成的高纯度 LC 分散体,MoS2 纤维的机械性能得到了改善。值得注意的是,通过控制湿法纺丝工艺参数,成功构建了具有结构手性的三维(3D)螺旋纤维。这种螺旋纤维具有多功能传感特性,包括(1)光探测、(2)pH 值监测、(3)气体探测和(4)三维应变传感。具有半导体特性的二维材料以及丰富的表面活性位点可实现一维(1D)和螺旋纤维几何形状的智能多功能性,这对可穿戴物联网(IoT)设备和软机器人等多种应用具有潜在的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2D MoS2 Helical Liquid Crystalline Fibers for Multifunctional Wearable Sensors

Fiber-based material systems are emerging as key elements for next-generation wearable devices due to their remarkable advantages, including large mechanical deformability, breathability, and high durability. Recently, greatly improved mechanical stability has been established in functional fiber systems by introducing atomic-thick two-dimensional (2D) materials. Further development of intelligent fibers that can respond to various external stimuli is strongly needed for versatile applications. In this work, helical-shaped semiconductive fibers capable of multifunctional sensing are obtained by wet-spinning MoS2 liquid crystal (LC) dispersions. The mechanical properties of the MoS2 fibers were improved by exploiting high-purity LC dispersions consisting of uniformly-sized MoS2 nanoflakes. Notably, three-dimensional (3D) helical fibers with structural chirality were successfully constructed by controlling the wet-spinning process parameters. The helical fibers exhibited multifunctional sensing characteristics, including (1) photodetection, (2) pH monitoring, (3) gas detection, and (4) 3D strain sensing. 2D materials with semiconducting properties as well as abundant surface reactive sites enable smart multifunctionalities in one-dimensional (1D) and helical fiber geometry, which is potentially useful for diverse applications such as wearable internet of things (IoT) devices and soft robotics.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
期刊最新文献
Bioactive Glass-Reinforced Hybrid Microfibrous Spheres Promote Bone Defect Repair via Stem Cell Delivery Fiber/Yarn and Textile-Based Piezoresistive Pressure Sensors ACAn Energy-Autonomous Wearable Fabric Powered by High-Power Density Sweat-Activated Batteries for Health Monitoring Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy Fiber Science at Xinjiang University: A Special Issue Dedicated to Centennial Celebration of Xinjiang University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1