通过粉末混合电火花加工研究纳米 TiB2 和 AlN 接枝 MWCNT 杂化 Al 7075 基体三元复合材料的可加工性和表面改性

Rahul Chandra Pradhan, Diptikanta Das, Barada Prasanna Sahoo, Chandrika Samal
{"title":"通过粉末混合电火花加工研究纳米 TiB2 和 AlN 接枝 MWCNT 杂化 Al 7075 基体三元复合材料的可加工性和表面改性","authors":"Rahul Chandra Pradhan, Diptikanta Das, Barada Prasanna Sahoo, Chandrika Samal","doi":"10.1177/09544062241257088","DOIUrl":null,"url":null,"abstract":"This paper accentuates powder-mixed electrical discharge machining (EDM) performance of a newly designed nano-TiB<jats:sub>2</jats:sub> and AlN grafted multiwall carbon nano-tube (MWCNT) hybridized Al 7075 matrix ternary composite. The hybrid metal matrix composite (MMC) was fabricated through squeeze casting route, preceded by two-stage reinforcement addition, mechanical agitation, and ultrasonic treatment. EDM was carried out using cryogenic treated Cu electrode and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particle-mixed dielectric medium. Influence of EDM process variables, that is, peak current ( I<jats:sub> P</jats:sub>), pulse-on time ( T<jats:sub> ON</jats:sub>), and powder concentration ( P<jats:sub> C</jats:sub>) on machinability of the hybrid MMC was studied considering material removal rate (MRR), tool wear rate (TWR), and average surface roughness ( Ra) as quality indicators. Effects of machining and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particle addition on surface morphology of the hybrid MMC were also explored through scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and elemental mapping. Results reveal elevation of MRR, reduction of TWR and improvement of surface finish during powder-mixed EDM in comparison to the non-mixed (conventional) EDM. Maximum traces of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particle deposition was identified on the machined surfaces while using the powder concentration of 1.5 g/l within the dielectric.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"71 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machinability investigation and surface modification of nano-TiB2 and AlN grafted MWCNT hybridized Al 7075 matrix ternary composite through powder-mixed EDM\",\"authors\":\"Rahul Chandra Pradhan, Diptikanta Das, Barada Prasanna Sahoo, Chandrika Samal\",\"doi\":\"10.1177/09544062241257088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper accentuates powder-mixed electrical discharge machining (EDM) performance of a newly designed nano-TiB<jats:sub>2</jats:sub> and AlN grafted multiwall carbon nano-tube (MWCNT) hybridized Al 7075 matrix ternary composite. The hybrid metal matrix composite (MMC) was fabricated through squeeze casting route, preceded by two-stage reinforcement addition, mechanical agitation, and ultrasonic treatment. EDM was carried out using cryogenic treated Cu electrode and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particle-mixed dielectric medium. Influence of EDM process variables, that is, peak current ( I<jats:sub> P</jats:sub>), pulse-on time ( T<jats:sub> ON</jats:sub>), and powder concentration ( P<jats:sub> C</jats:sub>) on machinability of the hybrid MMC was studied considering material removal rate (MRR), tool wear rate (TWR), and average surface roughness ( Ra) as quality indicators. Effects of machining and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particle addition on surface morphology of the hybrid MMC were also explored through scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and elemental mapping. Results reveal elevation of MRR, reduction of TWR and improvement of surface finish during powder-mixed EDM in comparison to the non-mixed (conventional) EDM. Maximum traces of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particle deposition was identified on the machined surfaces while using the powder concentration of 1.5 g/l within the dielectric.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241257088\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241257088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文重点介绍了一种新设计的纳米 TiB2 和 AlN 接枝多壁碳纳米管(MWCNT)杂化 Al 7075 基体三元复合材料的粉末混合电火花加工(EDM)性能。混合金属基复合材料(MMC)是通过挤压铸造工艺制成的,在此之前经过了两阶段的增强添加、机械搅拌和超声波处理。电火花加工使用低温处理过的铜电极和 Al2O3 粒子混合介质。以材料去除率(MRR)、刀具磨损率(TWR)和平均表面粗糙度(Ra)为质量指标,研究了电火花加工工艺变量,即峰值电流(I P)、脉冲开启时间(T ON)和粉末浓度(P C)对混合 MMC 加工性的影响。研究还通过扫描电子显微镜(SEM)、能量色散 X 射线光谱(EDS)和元素图谱探讨了加工和添加 Al2O3 粒子对混合 MMC 表面形貌的影响。结果显示,与非混合(传统)电火花加工相比,混合粉末电火花加工的 MRR 提高了,TWR 降低了,表面光洁度改善了。在电介质中使用浓度为 1.5 g/l 的粉末时,加工表面的 Al2O3 颗粒沉积痕迹最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machinability investigation and surface modification of nano-TiB2 and AlN grafted MWCNT hybridized Al 7075 matrix ternary composite through powder-mixed EDM
This paper accentuates powder-mixed electrical discharge machining (EDM) performance of a newly designed nano-TiB2 and AlN grafted multiwall carbon nano-tube (MWCNT) hybridized Al 7075 matrix ternary composite. The hybrid metal matrix composite (MMC) was fabricated through squeeze casting route, preceded by two-stage reinforcement addition, mechanical agitation, and ultrasonic treatment. EDM was carried out using cryogenic treated Cu electrode and Al2O3 particle-mixed dielectric medium. Influence of EDM process variables, that is, peak current ( I P), pulse-on time ( T ON), and powder concentration ( P C) on machinability of the hybrid MMC was studied considering material removal rate (MRR), tool wear rate (TWR), and average surface roughness ( Ra) as quality indicators. Effects of machining and Al2O3 particle addition on surface morphology of the hybrid MMC were also explored through scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and elemental mapping. Results reveal elevation of MRR, reduction of TWR and improvement of surface finish during powder-mixed EDM in comparison to the non-mixed (conventional) EDM. Maximum traces of Al2O3 particle deposition was identified on the machined surfaces while using the powder concentration of 1.5 g/l within the dielectric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
10.00%
发文量
625
审稿时长
4.3 months
期刊介绍: The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.
期刊最新文献
Research and analysis of rock breaking mechanical model of single-roller PDC compound bit Hybrid force-position coordinated control of a parallel mechanism with the number of redundant actuators equal to its DOF Rapid motion planning of manipulator in three-dimensional space under multiple scenes Oil and gas pipeline robot localization techniques: A review Anisogrid lattice structure in thermoplastic composite by filament gun deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1