{"title":"基于分析模型和以往地震的经验数据,利用新一代烈度测量方法,为非导性填充钢筋混凝土建筑提供脆性函数","authors":"Al Mouayed Bellah Nafeh, Gerard J. O’Reilly","doi":"10.1007/s10518-024-01955-4","DOIUrl":null,"url":null,"abstract":"<div><p>The regional seismic risk assessment of reinforced concrete (RC) building portfolios is a critical issue in earthquake engineering due to their high vulnerability and widespread distribution in seismic prone areas. A pertinent aspect in regional seismic risk applications is the ability to accurately quantify the exceedance of any damage state, generally via fragility functions. To this end, this study derives analytical fragility functions for large-scale seismic risk applications of non-ductile RC buildings with masonry infills characteristic of the Italian peninsula and Southern Europe in general. These were derived using a large database of archetype buildings developed to represent the temporal evolution in construction practice in Italy based on an extensive literature review and interviews with practising engineers and architects. Fragility functions for several infilled RC taxonomy classes were derived for multiple damage states using state-of-the-art analysis on detailed numerical models. Average spectral acceleration was adopted as the intensity measure throughout, since it has been shown to notably reduce dispersion and bias in quantifying the response, and subsequently refine the seismic risk estimates, for these typologies. The fragility functions are compared against empirical data collected following past earthquakes in Italy, namely L’Aquila 2009 and Umbria-Marche 1997. The development of empirical fragility functions was carried out using a novel derivation of average spectral acceleration-based ground-motion fields considering spatial and cross-period correlation models, which is a key component and development in this study. This paper shows how recent advances in analytical fragility function development can be integrated with past empirical observations to give more accurate and representative damage estimates for regional assessment.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 10","pages":"4983 - 5021"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fragility functions for non-ductile infilled reinforced concrete buildings using next-generation intensity measures based on analytical models and empirical data from past earthquakes\",\"authors\":\"Al Mouayed Bellah Nafeh, Gerard J. O’Reilly\",\"doi\":\"10.1007/s10518-024-01955-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The regional seismic risk assessment of reinforced concrete (RC) building portfolios is a critical issue in earthquake engineering due to their high vulnerability and widespread distribution in seismic prone areas. A pertinent aspect in regional seismic risk applications is the ability to accurately quantify the exceedance of any damage state, generally via fragility functions. To this end, this study derives analytical fragility functions for large-scale seismic risk applications of non-ductile RC buildings with masonry infills characteristic of the Italian peninsula and Southern Europe in general. These were derived using a large database of archetype buildings developed to represent the temporal evolution in construction practice in Italy based on an extensive literature review and interviews with practising engineers and architects. Fragility functions for several infilled RC taxonomy classes were derived for multiple damage states using state-of-the-art analysis on detailed numerical models. Average spectral acceleration was adopted as the intensity measure throughout, since it has been shown to notably reduce dispersion and bias in quantifying the response, and subsequently refine the seismic risk estimates, for these typologies. The fragility functions are compared against empirical data collected following past earthquakes in Italy, namely L’Aquila 2009 and Umbria-Marche 1997. The development of empirical fragility functions was carried out using a novel derivation of average spectral acceleration-based ground-motion fields considering spatial and cross-period correlation models, which is a key component and development in this study. This paper shows how recent advances in analytical fragility function development can be integrated with past empirical observations to give more accurate and representative damage estimates for regional assessment.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 10\",\"pages\":\"4983 - 5021\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-01955-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01955-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Fragility functions for non-ductile infilled reinforced concrete buildings using next-generation intensity measures based on analytical models and empirical data from past earthquakes
The regional seismic risk assessment of reinforced concrete (RC) building portfolios is a critical issue in earthquake engineering due to their high vulnerability and widespread distribution in seismic prone areas. A pertinent aspect in regional seismic risk applications is the ability to accurately quantify the exceedance of any damage state, generally via fragility functions. To this end, this study derives analytical fragility functions for large-scale seismic risk applications of non-ductile RC buildings with masonry infills characteristic of the Italian peninsula and Southern Europe in general. These were derived using a large database of archetype buildings developed to represent the temporal evolution in construction practice in Italy based on an extensive literature review and interviews with practising engineers and architects. Fragility functions for several infilled RC taxonomy classes were derived for multiple damage states using state-of-the-art analysis on detailed numerical models. Average spectral acceleration was adopted as the intensity measure throughout, since it has been shown to notably reduce dispersion and bias in quantifying the response, and subsequently refine the seismic risk estimates, for these typologies. The fragility functions are compared against empirical data collected following past earthquakes in Italy, namely L’Aquila 2009 and Umbria-Marche 1997. The development of empirical fragility functions was carried out using a novel derivation of average spectral acceleration-based ground-motion fields considering spatial and cross-period correlation models, which is a key component and development in this study. This paper shows how recent advances in analytical fragility function development can be integrated with past empirical observations to give more accurate and representative damage estimates for regional assessment.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.