颗粒介质中的构型力学

IF 2.4 3区 工程技术 Granular Matter Pub Date : 2024-06-27 DOI:10.1007/s10035-024-01443-1
Francois Nicot, Mingchun Lin, Antoine Wautier, Richard Wan, Félix Darve
{"title":"颗粒介质中的构型力学","authors":"Francois Nicot,&nbsp;Mingchun Lin,&nbsp;Antoine Wautier,&nbsp;Richard Wan,&nbsp;Félix Darve","doi":"10.1007/s10035-024-01443-1","DOIUrl":null,"url":null,"abstract":"<div><p>Granular materials belong to the class of complex materials within which rich properties can emerge on large scales despite a simple physics operating on the microscopic scale. Most notable is the dissipative behaviour of such materials mainly through non-linear frictional interactions between the grains which go out of equilibrium. A whole variety of intriguing features thus emerges in the form of bifurcation modes in either patterning or un-jamming. This complexity of granular materials is mainly due to the geometrical disorder that exists in the granular structure. Diverse configurations of grain collections confer to the assembly the capacity to deform and adapt itself against different loading conditions. Whereas the incidence of frictional properties in the macroscopic plastic behavior has been well described for long, the role of topological reorganizations that occur remains much more elusive. This paper attempts to shed a new light on this issue by developing ideas following the configurational entropy concept within a proper statistical framework. As such, it is shown that contact opening and closing mechanisms can give rise to a so-called configurational dissipation which can explain the irreversible topological evolutions that granular materials undergo in the absence of frictional interactions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Configurational mechanics in granular media\",\"authors\":\"Francois Nicot,&nbsp;Mingchun Lin,&nbsp;Antoine Wautier,&nbsp;Richard Wan,&nbsp;Félix Darve\",\"doi\":\"10.1007/s10035-024-01443-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Granular materials belong to the class of complex materials within which rich properties can emerge on large scales despite a simple physics operating on the microscopic scale. Most notable is the dissipative behaviour of such materials mainly through non-linear frictional interactions between the grains which go out of equilibrium. A whole variety of intriguing features thus emerges in the form of bifurcation modes in either patterning or un-jamming. This complexity of granular materials is mainly due to the geometrical disorder that exists in the granular structure. Diverse configurations of grain collections confer to the assembly the capacity to deform and adapt itself against different loading conditions. Whereas the incidence of frictional properties in the macroscopic plastic behavior has been well described for long, the role of topological reorganizations that occur remains much more elusive. This paper attempts to shed a new light on this issue by developing ideas following the configurational entropy concept within a proper statistical framework. As such, it is shown that contact opening and closing mechanisms can give rise to a so-called configurational dissipation which can explain the irreversible topological evolutions that granular materials undergo in the absence of frictional interactions.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01443-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01443-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

颗粒材料属于复杂材料的一种,尽管在微观尺度上的物理原理很简单,但在大尺度上却能产生丰富的特性。最值得注意的是,这类材料的耗散行为主要是通过颗粒之间的非线性摩擦相互作用而失去平衡的。因此,在图案化或非图案化的分岔模式中,出现了各种有趣的特征。颗粒材料的这种复杂性主要归因于颗粒结构中存在的几何无序性。颗粒集合的不同配置赋予了装配体在不同负载条件下的变形和适应能力。虽然摩擦特性在宏观塑性行为中的作用早已被充分描述,但拓扑重组所起的作用却仍然难以捉摸。本文试图通过在适当的统计框架内发展构型熵概念的思路来揭示这一问题。结果表明,接触开合机制可以产生所谓的构型耗散,从而可以解释颗粒材料在没有摩擦相互作用的情况下发生的不可逆拓扑演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Configurational mechanics in granular media

Granular materials belong to the class of complex materials within which rich properties can emerge on large scales despite a simple physics operating on the microscopic scale. Most notable is the dissipative behaviour of such materials mainly through non-linear frictional interactions between the grains which go out of equilibrium. A whole variety of intriguing features thus emerges in the form of bifurcation modes in either patterning or un-jamming. This complexity of granular materials is mainly due to the geometrical disorder that exists in the granular structure. Diverse configurations of grain collections confer to the assembly the capacity to deform and adapt itself against different loading conditions. Whereas the incidence of frictional properties in the macroscopic plastic behavior has been well described for long, the role of topological reorganizations that occur remains much more elusive. This paper attempts to shed a new light on this issue by developing ideas following the configurational entropy concept within a proper statistical framework. As such, it is shown that contact opening and closing mechanisms can give rise to a so-called configurational dissipation which can explain the irreversible topological evolutions that granular materials undergo in the absence of frictional interactions.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
期刊最新文献
Reducing segregation in vibrated binary-sized granular mixtures by excessive small particle introduction Thermal conductivity and shrinkage characteristics of bentonite-fly ash and bentonite-sand backfill material Experimental studies on fluctuation properties of dust, turbulence and electric field during floating dust weather in Lanzhou Prediction of liquid bridge rupture between two plates combining artificial neural network with grey wolf optimization algorithm Construction of granular aggregates with different porosity, shape, and size distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1