低侧叶稀疏线性阵列的优化设计

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-20 DOI:10.1109/OJAP.2024.3417318
Li Wang;Fenggan Zhang;Banghuan Hou
{"title":"低侧叶稀疏线性阵列的优化设计","authors":"Li Wang;Fenggan Zhang;Banghuan Hou","doi":"10.1109/OJAP.2024.3417318","DOIUrl":null,"url":null,"abstract":"To optimize the antenna performance in a sparse linear array (SLA) subject to specific constraints of the antenna aperture, number of elements and element spacing, this paper proposes an improved Differential Evolution (DE) algorithm integrating the Cauchy-Gauss mutation strategy. The initial value of the algorithm is generated through the chaotic Piecewise map, while the scaling factor is adjusted dynamically in line with the iterations and fitness values. When the algorithm indicates signs of premature convergence, the Cauchy-Gauss mutation strategy is applied to the population to escape local optima, so as to produce the global optimal solution. Standard function tests validate the effectiveness of the algorithm, proving its excellent accuracy and global search performance. Three diverse antenna-based simulation instances show that the improved algorithm can effectively reduce the peak sidelobe level (PSLL), thus elevating the antenna performance.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 5","pages":"1365-1376"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10565854","citationCount":"0","resultStr":"{\"title\":\"Optimal Design of Low Sidelobe Sparse Linear Arrays\",\"authors\":\"Li Wang;Fenggan Zhang;Banghuan Hou\",\"doi\":\"10.1109/OJAP.2024.3417318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To optimize the antenna performance in a sparse linear array (SLA) subject to specific constraints of the antenna aperture, number of elements and element spacing, this paper proposes an improved Differential Evolution (DE) algorithm integrating the Cauchy-Gauss mutation strategy. The initial value of the algorithm is generated through the chaotic Piecewise map, while the scaling factor is adjusted dynamically in line with the iterations and fitness values. When the algorithm indicates signs of premature convergence, the Cauchy-Gauss mutation strategy is applied to the population to escape local optima, so as to produce the global optimal solution. Standard function tests validate the effectiveness of the algorithm, proving its excellent accuracy and global search performance. Three diverse antenna-based simulation instances show that the improved algorithm can effectively reduce the peak sidelobe level (PSLL), thus elevating the antenna performance.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"5 5\",\"pages\":\"1365-1376\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10565854\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10565854/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10565854/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了优化稀疏线性阵列(SLA)的天线性能,本文提出了一种改进的差分进化(DE)算法,该算法集成了 Cauchy-Gauss 突变策略。该算法的初始值通过混沌片断图生成,缩放因子则根据迭代次数和适应度值动态调整。当算法出现过早收敛的迹象时,就会对群体采用考奇-高斯突变策略,以摆脱局部最优,从而产生全局最优解。标准功能测试验证了算法的有效性,证明了其出色的准确性和全局搜索性能。三个基于不同天线的仿真实例表明,改进后的算法能有效降低峰值侧叶电平(PSLL),从而提高天线性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Design of Low Sidelobe Sparse Linear Arrays
To optimize the antenna performance in a sparse linear array (SLA) subject to specific constraints of the antenna aperture, number of elements and element spacing, this paper proposes an improved Differential Evolution (DE) algorithm integrating the Cauchy-Gauss mutation strategy. The initial value of the algorithm is generated through the chaotic Piecewise map, while the scaling factor is adjusted dynamically in line with the iterations and fitness values. When the algorithm indicates signs of premature convergence, the Cauchy-Gauss mutation strategy is applied to the population to escape local optima, so as to produce the global optimal solution. Standard function tests validate the effectiveness of the algorithm, proving its excellent accuracy and global search performance. Three diverse antenna-based simulation instances show that the improved algorithm can effectively reduce the peak sidelobe level (PSLL), thus elevating the antenna performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
期刊最新文献
Front Cover Table of Contents Guest Editorial Introduction to the Special Section on Women’s Research in Antennas and Propagation Section (WRAPS) IEEE ANTENNAS AND PROPAGATION SOCIETY Electromagnetic and Thermal Co-Analysis of an Implanted Dipole Antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1