用可解释的人工智能推理基于深度学习的地图泛化中的制图知识

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Geographical Information Science Pub Date : 2024-06-20 DOI:10.1080/13658816.2024.2369535
Cheng Fu, Zhiyong Zhou, Yanan Xin, Robert Weibel
{"title":"用可解释的人工智能推理基于深度学习的地图泛化中的制图知识","authors":"Cheng Fu, Zhiyong Zhou, Yanan Xin, Robert Weibel","doi":"10.1080/13658816.2024.2369535","DOIUrl":null,"url":null,"abstract":"Cartographic map generalization involves complex rules, and a full automation has still not been achieved, despite many efforts over the past few decades. Pioneering studies show that some map gene...","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"5 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reasoning cartographic knowledge in deep learning-based map generalization with explainable AI\",\"authors\":\"Cheng Fu, Zhiyong Zhou, Yanan Xin, Robert Weibel\",\"doi\":\"10.1080/13658816.2024.2369535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cartographic map generalization involves complex rules, and a full automation has still not been achieved, despite many efforts over the past few decades. Pioneering studies show that some map gene...\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2024.2369535\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2024.2369535","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

制图地图泛化涉及复杂的规则,尽管过去几十年来付出了很多努力,但仍未实现完全自动化。开创性的研究表明,一些地图基因...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reasoning cartographic knowledge in deep learning-based map generalization with explainable AI
Cartographic map generalization involves complex rules, and a full automation has still not been achieved, despite many efforts over the past few decades. Pioneering studies show that some map gene...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
期刊最新文献
GPU-accelerated parallel all-pair shortest path routing within stochastic road networks Collective flow-evolutionary patterns reveal the mesoscopic structure between snapshots of spatial network Geospatial foundation models for image analysis: evaluating and enhancing NASA-IBM Prithvi’s domain adaptability Translating street view imagery to correct perspectives to enhance bikeability and walkability studies A multi-view ensemble machine learning approach for 3D modeling using geological and geophysical data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1