D-GRIL:具有双参数持久性的端到端拓扑学习

Soham Mukherjee, Shreyas N. Samaga, Cheng Xin, Steve Oudot, Tamal K. Dey
{"title":"D-GRIL:具有双参数持久性的端到端拓扑学习","authors":"Soham Mukherjee, Shreyas N. Samaga, Cheng Xin, Steve Oudot, Tamal K. Dey","doi":"arxiv-2406.07100","DOIUrl":null,"url":null,"abstract":"End-to-end topological learning using 1-parameter persistence is well-known.\nWe show that the framework can be enhanced using 2-parameter persistence by\nadopting a recently introduced 2-parameter persistence based vectorization\ntechnique called GRIL. We establish a theoretical foundation of differentiating\nGRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration\nfunction on standard benchmark graph datasets. Further, we exhibit that this\nframework can be applied in the context of bio-activity prediction in drug\ndiscovery.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D-GRIL: End-to-End Topological Learning with 2-parameter Persistence\",\"authors\":\"Soham Mukherjee, Shreyas N. Samaga, Cheng Xin, Steve Oudot, Tamal K. Dey\",\"doi\":\"arxiv-2406.07100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End-to-end topological learning using 1-parameter persistence is well-known.\\nWe show that the framework can be enhanced using 2-parameter persistence by\\nadopting a recently introduced 2-parameter persistence based vectorization\\ntechnique called GRIL. We establish a theoretical foundation of differentiating\\nGRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration\\nfunction on standard benchmark graph datasets. Further, we exhibit that this\\nframework can be applied in the context of bio-activity prediction in drug\\ndiscovery.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.07100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.07100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究表明,通过采用最近推出的基于 2 参数持久性的矢量化技术 GRIL,可以利用 2 参数持久性来增强端到端拓扑学习框架。我们建立了区分 GRIL 和 D-GRIL 的理论基础。我们证明,D-GRIL 可用于在标准基准图数据集上学习双分层函数。此外,我们还展示了这一框架可以应用于药物发现中的生物活性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D-GRIL: End-to-End Topological Learning with 2-parameter Persistence
End-to-end topological learning using 1-parameter persistence is well-known. We show that the framework can be enhanced using 2-parameter persistence by adopting a recently introduced 2-parameter persistence based vectorization technique called GRIL. We establish a theoretical foundation of differentiating GRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration function on standard benchmark graph datasets. Further, we exhibit that this framework can be applied in the context of bio-activity prediction in drug discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor triangular geometry of modules over the mod 2 Steenrod algebra Ring operads and symmetric bimonoidal categories Inferring hyperuniformity from local structures via persistent homology Computing the homology of universal covers via effective homology and discrete vector fields Geometric representation of cohomology classes for the Lie groups Spin(7) and Spin(8)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1