{"title":"缝合参数对缝合泡沫芯材夹层复合材料弯曲性能的影响","authors":"Shekoufeh Rasouli Rizi, Hooshang Nosraty, Seyed Abolfazl Mirdehghan","doi":"10.1177/00219983241265165","DOIUrl":null,"url":null,"abstract":"One of the primary challenges faced by sandwich composites is facesheet-core debonding, which can be mitigated through various techniques such as z-pinning and stitching through the thickness. This study investigates the impact of stitching on the bending behavior of sandwich composites comprising E-glass composite facesheets and a polyurethane foam core, employing experimental, numerical, and analytical methods. Specimens were stitched at three stitch spacings of 0.5, 1, and 2 cm, with a stitch pitch of 0.8 cm and stitch seam angles of 0°, 90°, 0/90°, ±45°, 45°/90°, and ±60°. Analysis of facesheet bending stress, core shear stress, and bending rigidity of stitched specimens was conducted through three-point bending tests and compared with unstitched specimens. Results indicate that reducing stitch spacing, thereby increasing stitch density, improves bending strength, and the best bending behavior observed at ±45° stitch seam angles. Damage assessment revealed fractures and depression of the foam, wrinkles on the upper facesheet, and buckling failure of resin columns. Additionally, a theoretical model predicted bending rigidity, showing good agreement (4%–15%) with experimental data. Finite element analysis using the ABAQUS program validated the experimental results, suggesting numerical modeling as a viable method for predicting flexural properties of stitched foam core sandwich composites.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"4 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of stitching parameters on the flexural properties of stitched foam core sandwich composites\",\"authors\":\"Shekoufeh Rasouli Rizi, Hooshang Nosraty, Seyed Abolfazl Mirdehghan\",\"doi\":\"10.1177/00219983241265165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the primary challenges faced by sandwich composites is facesheet-core debonding, which can be mitigated through various techniques such as z-pinning and stitching through the thickness. This study investigates the impact of stitching on the bending behavior of sandwich composites comprising E-glass composite facesheets and a polyurethane foam core, employing experimental, numerical, and analytical methods. Specimens were stitched at three stitch spacings of 0.5, 1, and 2 cm, with a stitch pitch of 0.8 cm and stitch seam angles of 0°, 90°, 0/90°, ±45°, 45°/90°, and ±60°. Analysis of facesheet bending stress, core shear stress, and bending rigidity of stitched specimens was conducted through three-point bending tests and compared with unstitched specimens. Results indicate that reducing stitch spacing, thereby increasing stitch density, improves bending strength, and the best bending behavior observed at ±45° stitch seam angles. Damage assessment revealed fractures and depression of the foam, wrinkles on the upper facesheet, and buckling failure of resin columns. Additionally, a theoretical model predicted bending rigidity, showing good agreement (4%–15%) with experimental data. Finite element analysis using the ABAQUS program validated the experimental results, suggesting numerical modeling as a viable method for predicting flexural properties of stitched foam core sandwich composites.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241265165\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241265165","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
摘要
夹层复合材料面临的主要挑战之一是面片与夹芯的脱粘,可通过各种技术来缓解这一问题,例如通过厚度进行 Z 形钉合和缝合。本研究采用实验、数值和分析方法,研究了缝合对由 E 玻璃复合材料面板和聚氨酯泡沫夹芯组成的夹层复合材料弯曲行为的影响。试样按 0.5、1 和 2 厘米三种缝合间距缝合,缝合间距为 0.8 厘米,缝合角度为 0°、90°、0/90°、±45°、45°/90° 和 ±60°。通过三点弯曲试验分析了缝合试样的面板弯曲应力、核心剪应力和弯曲刚度,并与未缝合试样进行了比较。结果表明,减少缝合间距从而增加缝合密度可提高弯曲强度,在 ±45° 缝合角处可观察到最佳弯曲性能。损伤评估显示,泡沫出现断裂和凹陷,上面板出现皱纹,树脂柱出现屈曲失效。此外,理论模型预测了弯曲刚度,结果与实验数据吻合(4%-15%)。使用 ABAQUS 程序进行的有限元分析验证了实验结果,表明数值建模是预测缝合泡沫夹芯复合材料弯曲性能的一种可行方法。
Effects of stitching parameters on the flexural properties of stitched foam core sandwich composites
One of the primary challenges faced by sandwich composites is facesheet-core debonding, which can be mitigated through various techniques such as z-pinning and stitching through the thickness. This study investigates the impact of stitching on the bending behavior of sandwich composites comprising E-glass composite facesheets and a polyurethane foam core, employing experimental, numerical, and analytical methods. Specimens were stitched at three stitch spacings of 0.5, 1, and 2 cm, with a stitch pitch of 0.8 cm and stitch seam angles of 0°, 90°, 0/90°, ±45°, 45°/90°, and ±60°. Analysis of facesheet bending stress, core shear stress, and bending rigidity of stitched specimens was conducted through three-point bending tests and compared with unstitched specimens. Results indicate that reducing stitch spacing, thereby increasing stitch density, improves bending strength, and the best bending behavior observed at ±45° stitch seam angles. Damage assessment revealed fractures and depression of the foam, wrinkles on the upper facesheet, and buckling failure of resin columns. Additionally, a theoretical model predicted bending rigidity, showing good agreement (4%–15%) with experimental data. Finite element analysis using the ABAQUS program validated the experimental results, suggesting numerical modeling as a viable method for predicting flexural properties of stitched foam core sandwich composites.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).