Helen Bristow, Xiaole Li, Maxime Babics, Sofiia Kosar, Anil Reddy Pininti, Shanshan Zhang, Badri Vishal, Shruti Sarwade, Arsalan Razzaq, Ahmed Ali Said, Gilles Lubineau, Stefaan De Wolf
{"title":"减轻过氧化物/硅串联太阳能模块中的分层现象","authors":"Helen Bristow, Xiaole Li, Maxime Babics, Sofiia Kosar, Anil Reddy Pininti, Shanshan Zhang, Badri Vishal, Shruti Sarwade, Arsalan Razzaq, Ahmed Ali Said, Gilles Lubineau, Stefaan De Wolf","doi":"10.1002/solr.202400289","DOIUrl":null,"url":null,"abstract":"<p>As perovskite/silicon tandem solar cells head toward industrialization, one emerging challenge relates to the mechanical reliability of these organic–inorganic multilayer devices. Herein, the fracture toughness and interfacial strength of monolithic p–i–n perovskite/silicon tandems are assessed in the context of module integration. While the weakest layer in the tandem stack investigated is found to be C<sub>60</sub>, used here as electron-transport layer (interfacial tensile strength of 0.64 MPa), more concerningly, the fracture energy of the C<sub>60</sub>/tin-oxide interface is found to be only 1.2 J m<sup>−2</sup>. The low fracture toughness of perovskite/silicon tandems can encourage crack propagation and large-scale delamination during processes used for their integration into modules such as cell cutting, interconnection, and vacuum lamination. By improving the tin oxide buffer layer properties and reducing sputtering-induced internal stress (associated with the transparent top electrode deposition onto the tin the oxide buffer layer), the fracture energy is improved to over 160 J m<sup>−2</sup>. A second strategy to mitigate delamination due to the low fracture toughness of the cells is tailoring encapsulation and cell processing techniques specifically toward the perovskite/silicon tandem technology. In this work, a critical reliability issue, relevant for any perovskite-based optoelectronic technology requiring device packaging, is addressed.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 14","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Delamination in Perovskite/Silicon Tandem Solar Modules\",\"authors\":\"Helen Bristow, Xiaole Li, Maxime Babics, Sofiia Kosar, Anil Reddy Pininti, Shanshan Zhang, Badri Vishal, Shruti Sarwade, Arsalan Razzaq, Ahmed Ali Said, Gilles Lubineau, Stefaan De Wolf\",\"doi\":\"10.1002/solr.202400289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As perovskite/silicon tandem solar cells head toward industrialization, one emerging challenge relates to the mechanical reliability of these organic–inorganic multilayer devices. Herein, the fracture toughness and interfacial strength of monolithic p–i–n perovskite/silicon tandems are assessed in the context of module integration. While the weakest layer in the tandem stack investigated is found to be C<sub>60</sub>, used here as electron-transport layer (interfacial tensile strength of 0.64 MPa), more concerningly, the fracture energy of the C<sub>60</sub>/tin-oxide interface is found to be only 1.2 J m<sup>−2</sup>. The low fracture toughness of perovskite/silicon tandems can encourage crack propagation and large-scale delamination during processes used for their integration into modules such as cell cutting, interconnection, and vacuum lamination. By improving the tin oxide buffer layer properties and reducing sputtering-induced internal stress (associated with the transparent top electrode deposition onto the tin the oxide buffer layer), the fracture energy is improved to over 160 J m<sup>−2</sup>. A second strategy to mitigate delamination due to the low fracture toughness of the cells is tailoring encapsulation and cell processing techniques specifically toward the perovskite/silicon tandem technology. In this work, a critical reliability issue, relevant for any perovskite-based optoelectronic technology requiring device packaging, is addressed.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 14\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400289\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400289","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Mitigating Delamination in Perovskite/Silicon Tandem Solar Modules
As perovskite/silicon tandem solar cells head toward industrialization, one emerging challenge relates to the mechanical reliability of these organic–inorganic multilayer devices. Herein, the fracture toughness and interfacial strength of monolithic p–i–n perovskite/silicon tandems are assessed in the context of module integration. While the weakest layer in the tandem stack investigated is found to be C60, used here as electron-transport layer (interfacial tensile strength of 0.64 MPa), more concerningly, the fracture energy of the C60/tin-oxide interface is found to be only 1.2 J m−2. The low fracture toughness of perovskite/silicon tandems can encourage crack propagation and large-scale delamination during processes used for their integration into modules such as cell cutting, interconnection, and vacuum lamination. By improving the tin oxide buffer layer properties and reducing sputtering-induced internal stress (associated with the transparent top electrode deposition onto the tin the oxide buffer layer), the fracture energy is improved to over 160 J m−2. A second strategy to mitigate delamination due to the low fracture toughness of the cells is tailoring encapsulation and cell processing techniques specifically toward the perovskite/silicon tandem technology. In this work, a critical reliability issue, relevant for any perovskite-based optoelectronic technology requiring device packaging, is addressed.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.